

Copie

2 5 SET. 2019

PIANO REGOLATORE GENERALE

Studio geologico

Paromnicia REGIONALE DI PALERMO

VISTO: ILICOMMISSARIO(AD ACTA

Allegato alla delibera Commissariale n. 04 del 31/10/19 IL SEGRETARIO GENERALE

Dott. Ricupati Chistofaro Il Segretario Generale

RELAZIONE GEOLOGICA

IL SINDACO

J.CONSULENTI GEOLOGI Dott. Gaspare Ingrao GASPARE INGRAO

Dott.ssa Santina Sambataro

DATA

F. 1101. 2006

AGGIORNAMENTO

ASSESSORATO LAVORI PUBBLICI UFFICIO DEL GENIO CIVILE DI PALERIMO

Visto al sensi dell'Art. 13 della Legoa 2/2-1974 n.64
con le prescrizioni di cui alla nota di pari numero e data.

N° 100 Palermo II L'INGEGNERE CAPO
(Ing. P. No Monaco) 2-0 MAR. 2008

SOMMARIO

INTRODUZIONE

CAPITOLO I

Studio e valutazione su base cartografica a scala 1:10.000

1.0.	Premesse e finalità dello studio
2.0.	Stato dei luoghi
3.0.	Inquadramento territoriale
3.1	Inquadramento tettonico-strutturale
3.2.	Inquadramento geologico
3:3	Inquadramento geomorfologico
3.4	Inquadramento idrogeologico
4.0	Valutazione sulla pericolosità geologica
4.1.1	Pericolosità geologica per dissesti
4.1.2	Verifica di stabilità del pendio
4.2	Pericolosità geologica per esondazione
4.2.1	Delimitazione dell'area interessata dalle esondazioni e
	caratteristiche fisiche dei relativi bacini idrografici
4.2.2	Valutazioni idrologiche
4.2.2.1	Determinazione della curva di probabilità pluviometrica
4.2.2.2	Applicazione della legge di Gumbel
4.2.2.3	Legge a due componenti
4.2.3	Determinazione dei parametri idrologici dei bacini
4.2.3.1	Determinazioni dei tempi di corrivazione
4.2.3.2	Intensità di piogge critiche e coefficiente di deflusso
4.2.4	Calcolo delle portate di piena nei bacini di interesse
4.2.5	Verifiche idrauliche e valutazione delle aree di allagamento per
	fissato tempo di ritorno
4.2.5.1	Scelta delle Sezioni di Verifica idraulica
4.2.5.2	Verifica idraulica
4.2.5.3	Valutazione delle aree di allagamento per fissato tempo di ritorno
4.2.6.	Analisi dei risultati
	D D D D D D D D D D D D D D D D D D D

CAPITOLO II

Studio e valutazione su base cartografica a scala 1:2000

1.0	Criteri e metodi per lo studio di dettaglio
2.0	Accertamenti geognostici
2.1	Sondaggi meccanici a rotazione ed a carotaggio continuo
2.2	Prove geotecniche di laboratorio
2.3	Indagini geofisiche
2.3.1	Metodologia di indagine down hole
2.3.2	Acquisizione dati
3.0	Interpretazione dei dati raccolti
3.1	Aspetti geologici
3.2	Aspetti geomorfologici
3.3	Aspetti litotecnici
3.4	Aspetti geofisici
4.0	Pericolosità sismica
4.1	Riferimenti normativi
4.2	Metodologia e criteri adottati per la redazione della carta delle
	zone a maggiore pericolosità sismica locale
4.3	Metodologia e criteri adottati per la redazione della carta delle
	zone a maggiore pericolosità sismica locale

CAPITOLO TERZO

Compatibilita' geologico - urbanistiche

1.0	Identificazione e delimitazione dei vincoli
2.0	Osservazioni, raccomandazioni e prescrizioni
3.0	Considerazioni conclusive

APPENDICE

- Programma delle indagini geognostiche
- Computo metrico indagini geognostiche eseguite a consuntivo

ELENCO ELABORATI

R - Relazione

ALL. 1 - Indagini geognostiche

TAV.A1 – Carta geologica scala 1:10.000

TAV.A2 – Carta geomorfologica scala 1:10.000

TAV.A3 – Carta idrogeologica scala 1:10.000

TAV.A4 – Carta delle pericolosità geologica scala 1:10.000

TAV.A5 – Quadro di unione a scala 1:10. 00 delle zone di studio a scala 1:2.000

TAV. B1.1/6 – Carta geologica scala 1:2.000

TAV. B2.1/6 - Carta geomorfologica scala 1:2.000

TAV. B3.1/6 - Carta litotecnica scala 1.2.000

TAV. B4.1/6 – Carta della pericolosità geologica scala 1:2000

TAV. B5.1/6- Carta delle zone a maggiore pericolosità sismica locale scala 1:2000

TAV. C - Sezioni geologiche schematiche scala 1:1000

INTRODUZIONE

L'Amministrazione comunale di Capaci al fine di dotarsi di P.R.G. ha affidato agli scriventi l'incarico per la redazione dello studio geologico e per le indagini di supporto al piano regolatore generale.

Gli scriventi, all'interno del gruppo di lavoro formato per la definizione del PRG, si sono occupati ed hanno trattato, in particolare, gli aspetti geologici e le problematiche connesse alla caratterizzazione ed individuazione della pericolosità geologica al fine di definire la compatibilità urbanistica in conformità alla circolare A.R.T.A. n.2222/95.

E' appena il caso di evidenziare che gli scriventi hanno tenuto conto nel corso del lavoro, dello studio sulla valutazione del rischio idrogeologico connesso al D.A.R.T.A. 298/41 art.6, già svolto dal dott. Gaspare Ingrao, approvato e decretato.

Il lavoro specialistico svolto è stato coordinato dall'Ufficio con incontri e tavoli tecnici presso la Casa comunale e mediante appositi sopralluoghi; quest'ultimo ha altresì fornito i supporti cartografici con le delimitazioni delle aree oggetto di approfondimento.

Il compendio di tutte le informazioni, dati, risultanze, interpretazioni e considerazioni sullo stato dei luoghi ha consentito di produrre il presente studio geologico di supporto alla pianificazione urbanistica.

Al fine di semplificare la lettura delle informazioni che hanno condotto alla suddetta rappresentazione, gli elaborati sono suddivisi nel seguente modo:

- relazione:
- allegati con i-dati e le informazioni oggetto di interpretazione;
- tavole grafiche tematiche.

La relazione dopo l'introduzione è composta da tre capitoli:

- CAPITOLO I: studio e valutazione su base cartografica a scala 1:10.000;
- CAPITOLO II: studio e valutazione su base cartografica a scala 1:2.000;
- CAPITOLO III: compatibilità geologico urbanistica.
- APPENDICE

La suddetta struttura della relazione consente una visione organica di quanto studiato pur mantenendo le peculiarità che sono previste dalla normativa vigente.

CAPITOLO I STUDIO E VALUTAZIONI SU BASE CARTOGRAFICA A SCALA 1:10.000

1.0 Premessa e finalità dello studio

L'Amministrazione comunale di Capaci nell'ambito dell'aggiornamento, adeguamento e rivisitazione del PRG, ha affidato agli scriventi l'incarico della redazione dello studio geologico dell'intero territorio comunale a supporto sia della pianificazione urbanistica generale che di quella attuativa.

La presente relazione intende fornire elementi utili e sufficienti per la definizione dello stato dei luoghi necessari e propedeutici al progetto di Piano da sottoporre per i pareri di competenza e, nello specifico, nell'ambito urbano.

Lo studio geologico, pertanto, redatto in conformità alla vigente normativa, è stato redatto sulla base delle informazioni e dati acquisiti, delle ricognizioni e delle indagini geognostiche acquisite ed eseguite nel corso dei lavori.

- Lo studio in particolare ha consentito di produrre cartografie tematiche a scala 1:10.000 per l'intero territorio comunale e a scala 1:2000 per le aree di interesse urbanistico.

2.0 Stato dei luoghi

Il territorio comunale di Capaci è esteso circa 6,1 Kmq. Esso si sviluppa in destra idraulica del corso d'acqua denominato Torrente Ciachea e lungo la linea di costa, con andamento nord – sud (Fig.1 – Corografia scala 1:25.000). Altresì è caratterizzato da due contesti alquanto distinti tra loro: una fascia costiera sub pianeggiante e collinare, urbanizzata, e una fascia montana non urbanizzata.

Altro elemento molto significativo, che assume una valenza importante nella trattazione dello studio, è quello rappresentato dalle vie di comunicazione, le più importanti delle quali sono la ferrovia, l'autostrada Palermo – Mazara del Vallo, la strada statale n. 113 e le S.P. di collegamento con il Comune di Torretta.

Sono presenti strade comunali e interpoderali che integrano diffusamente l'intero territorio.

Tali elementi assumono importanza sia dal punto di vista antropico che da quello strettamente connesso ai fattori geomorfologici caratteristici del territorio.

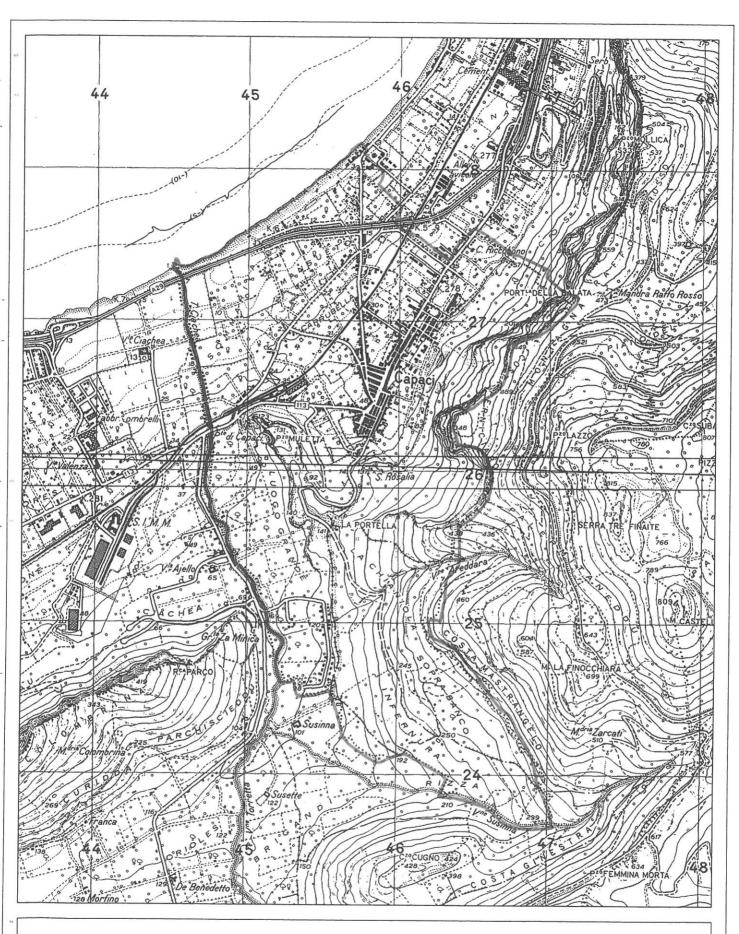


Fig. 1 - Corografia

scala 1:25.000

3.0 Inquadramento territoriale

Il territorio di Capaci è caratterizzato da due ambienti alquanto distinti fra loro: una ampia spianata costiera e una porzione collinare-montana.

L'assetto dei terreni è stato notevolmente influenzato dalle vicende tettoniche, dall'azione regolatrice del mare e dalle azioni determinate dagli agenti esogeni di erosione e modellamento.

3.1. Inquadramento geologico - strutturale

Per l'inquadramento geologico – strutturale e la individuazione e descrizione delle formazioni geologiche affioranti nel territorio in esame ci si è avvalsi della bibliografia esistente, dei rilievi di superficie.

Il territorio siciliano è frutto di alterne vicende sedimentarie e di complesse vicissitudini tettoniche in un arco temporale che va dal Paleozoico al Quaternario.

I monti di Palermo rappresentano una porzione della catena Appenninico – Maghrebide, costituita da terreni mesozoico – terziari appartenenti a domini paleogeografici diversi.

Nell'area oggetto di studio affiorano più unità stratigrafico-strutturali derivanti dalla deformazione, avvenuta a partire dal Miocene inf., di domini paleogeografici carbonatici e terrigeno-carbonatici di età mesozoico-paleogenica.

L'analisi delle facies e la ricostruzione palinspastica di detti corpi geologici permettono di riconoscere, da Nord verso Sud, una serie di unità tettoniche derivanti dalla deformazione dei terreni appartenenti ai domini paleogeografici della "Piattaforma Carbonatica Panormide", del "Bacino Imerese" e della "Piattaforma Carbonatica Pelagica Trapanese".

I terreni derivanti dalla deformazione della Piattaforma Carbonatica Panormide affiorano nei rilievi che si affacciano nella parte settentrionale della Piana di Palermo.

Le rocce in facies di piattaforma carbonatica si riconoscono a partire dal Norico e continuano fino al Cretaceo medio con un'interruzione nell'intervallo Dogger-Malm inf., in cui si hanno locali emersioni della piattaforma, documentate da paleosuoli e da fenomeni paleocarsici.

Il processo di restringimento dell'area di piattaforma iniziato nel Dogger-Malm si accentua nel Cretaceo medio-sup. con l'instaurarsi, sui terreni di piattaforma interna, di banchi di Rudiste.

Processi di "annegamento" differenziali, legati alla tettonica sinsedimentaria, portano sui terreni di piattaforma sedimenti di mare via via più profondo.

Dallo smembramento di questo dominio si sono originate due U.S.S., dove per U.S.S. si intende "l'insieme di corpi geologici con omogeneità di facies e di comportamento strutturale" (D'Argenio e Scandone, 1970).

- U.S.S. Monte Gallo Monte Palmeto, caratterizzata da calcari stromatolitici e loferitici, calcari a megalodonti, calcilutiti ad alghe e foraminiferi;
- U.S.S. Cozzo di Lupo, caratterizzata da depositi carbonatici, biolititi a coralli ed alghe, biocalcareniti, biocalciruditi e brecce.

La successione è chiusa dal complesso di depositi torbiditici, peliti, arenarie gradate, quarzareniti, argilliti, marne argillose e sabbiose, denominato dalla letteratura come Flysch Numidico (Oligocene sup. - Miocene inf.), poggianti sui carbonati meso-cenozoici con evidenti contatti di scollamento.

Nell'Oligocene si mettono in luce delle emersioni localizzate, fino a quando nell'Aquitaniano si verificano delle condizioni di piattaforma sommerse, che dopo il Langhiano passano a bacino.

In particolare i terreni affioranti entro il territorio preso in esame, appartengono all'U.S.S. Cozzo di lupo, derivati entrambe dalla deformazione della piattaforma carbonatica panormide ed hanno età compresa tra il Trias sup. ed il Miocene inf., ricoperti da depositi calcarenitici terrazzati.

Per quanto riguarda la tettonica, sempre secondo Abate et al. (op. citata), nell'evoluzione paleogeografica e paleotettonica dei Monti di Palermo vanno evidenziati tre momenti:

- Trias medio-sup. - Lias. Individuazione di un bacino intracratonico (bacino Lercarese) con depositi clastico-terrigeno-carbonatici che corrispondono ad un momento di separazione continentale. Il Bacino di Lercara corrisponde in parte al successivo Bacino Imerese: le sue parti marginali vengono gradualmente occupate dai terreni carbonatici di piattaforma progradanti verso le aree periferiche ancora emerse o già occupate da depositi evaporitici.

- Giura-Cretaceo. In questo periodo, in corrispondenza della fase di separazione oceanica, la Piattaforma Carbonatica Panormide diventa una piattaforma epioceanica (D'Argenio, 1968; 1974).
- Langhiano-Oligocene sup. In questo periodo la tettogenesi comincia a modificare il quadro paleogeografico con le seguenti fasi tettogenetiche:

-fase Langhiana, durante la quale l'U.S.S. Sagana-Belmonte Mezzagno comincia a sovrascorrere sulle aree più esterne del Bacino Imerese occupate dal Flysch Numidico;

-fase Serravalliano-Tortoniana. Entro questo intervallo l'U.S.S. di Piana degli Albanesi sovrascorre ricoprendo l'U.S.S. del Monte Kumeta.

Alla tettonica plicativa post-messiniana segue una fase tettonica disgiuntiva conseguente al sollevamento dell'edificio strutturale dei Monti di Palermo, il quale raggiunge due acmi nell'Emiliano e nel Siciliano; le relative faglie sub-verticali si possono raggruppare in due sistemi principali, per lo più paralleli agli assi delle pieghe. Questi sistemi sono:

- grandi dislocazioni O.S.O.-E.N.E. che determinano il semigraben del Fiume Eleuterio e di Partinico e il graben di Monreale;
- dislocazioni N.O.-S.E. nella parte meridionale, ruotata in quella settentrionale con andamento N.N.O.-S.S.E.

Da un punto di vista strutturale i complessi carbonatici presenti sono il risultato delle fasi tettoniche che nel Miocene hanno determinato il corrugamento della Sicilia.

Le attuali strutture sono dovute alla tettonica compressiva post-messiniana e distensiva plio-quaternaria che ha generato nell'area in cui rientra il territorio in esame, un sistema di faglie ad andamento SW – NE determinando gli attuali rapporti geometrici e giaciturali.

Nell'area affiorano terreni riconducibili alle Unità Stratigrafico Strutturali Monte Gallo – Monte Palmeto e Cozzo di Lupo afferenti al dominio Panormide, un dominio paleogeografico tipico di ambiente di piattaforma carbonatica.

Di tale unità fanno parte terreni carbonatici di età compresa fra il Trias e l'Eocene. Su di essi si è depositata la formazione calcarenitica pleistocenica costituita da arenarie calcaree, bioclasti e sabbie.

3.2. Inquadramento geologico

Nel territorio oggetto del presente studio sono presenti le formazioni geologiche e i depositi di seguito riportati:

Complesso Carbonatico costituito da Calcari e calcari dolomitici (Lias inf. –Trias sup.) e loferitici, con megalodonti e biotiti algali, di colore bianco-rosato, mal stratificati, fagliati e fessurati, affiorano ad est di Montagna Raffo Rosso.

Calcari stromatolitici (Cretaceo inf. -Malm) e calcilutiti ad alghe e foraminiferi, calcareniti oolitiche tipiche di ambiente di piana tidale e di retroscogliera; calcilutiti, calcareniti e brecce a nereidi e coralli di ambiente di retroscogliera e di scogliera, U.S.S. Monte Gallo - Monte Palmeto.

Affiorano lungo il costone posto a monte dell'abitato in banconi di qualche metro o strati decimetrici con giacitura a franapoggio e pendenze comprese fra 25° e 40° circa. Si presentano di colore variabile dal grigio chiaro al grigio scuro con tracce di alterazione di colore rossastro. Sono interessati da una fitta rete di fratture e fessure che intersecandosi con i piani di stratificazione determinano la suddivisione dell'ammasso roccioso in blocchi poliedrici di volume variabile.

Biocalcareniti e calcareniti e brecce (Paleocene – Cretaceo sup.) a frammenti di rudiste e foraminiferi bentonici alternate a calcilutiti con organismi planctonici di età compresa fra il Cretaceo sup. e il Barremiano (U.S.S. Monte Gallo – Monte Palmeto).

Facies di margine di piattaforma, di colore grigio si presentano mal stratificate, fratturate.

Argille siltose ed arenarie quarzose (Miocene inf. – Oligocene sup.) afferenti alla formazione nota con il nome di Flysch Numidico, costituita di depositi di tipo torbiditico, rappresentati da un'alternanza di peliti brune, quarzosiltiti e quarzareniti di colore grigio-giallastro in strati e banchi, intercalazioni di siltiti brune e marne da argillose a sabbiose. Le quarzareniti e quarzosiltiti di colore grigiastro e bruno giallastro in superficie per effetto dell'alterazione, si presentano in strati e banchi, anche di notevole spessore, talora con struttura gradata.

Le argille e argille marnose si presentano prive di stratificazione, di colore bruno e grigio, giallastro per alterazione, ricche di ossidi di ferro, con struttura a

X

superiori dei versanti, più ripide, e le zone a pendenza moderata e sub pianeggianti.

Sono costituiti di materiale lapideo di dimensioni centimetriche decimetriche sino ai massi di volume dell'ordine di qualche metro cubo immersi in matrice sabbiosa di colore bruno rossastro. Gli spessori sono variabili anche in intorni limitati sebbene di massima sono minori nelle porzioni sommitali e tendono ad aumentare verso la base della falda detritica e a valle delle incisioni dei versanti.

3.3 Inquadramento geomorfologico

Dal punto di vista morfologico l'area è caratterizzata da un andamento sub – pianeggiante dato dalla presenza di un terrazzo marino, e dalle alluvioni dell'adiacente torrente, quest'ultimo ha un bacino di circa 30 Kmq alla foce, le aste principali di maggior apporto idrico nella zona oggetto di studio sono: il Vallone Areddara con 2 Kmq a quota 70 m.s.m ed il Vallone Susinna con 5 circa Kmq a quota 84 m s.m.

Il torrente Ciachea sfocia a mare e lungo il suo tratto finale trova una serie di infrastrutture di notevole importanza (ponti ferroviari e stradali, scatolari etc) nonché nella zona mediana zone variamente urbanizzate sia ad uso residenziale che economico.

Il torrente si sviluppa prevalentemente su terreni di natura argillosa nella parte mediana, mentre nei tratti iniziale e terminale attraversa terreni di natura carbonatica; esso ha uno sviluppo alquanto regolare e talvolta ben inciso.

E' il corso d'acqua più grande del comprensorio, sia come sviluppo che come portata. Il suo corso rappresenta il confine con i Comuni di Carini e Torretta e quindi il limite della rappresentazione cartografica dello studio idraulico effettuato.

Il Vallone Areddara, tributario destro del torrente Ciachea si sviluppa in terreni di natura carbonatica presenta uno sviluppo alquanto regolare e talvolta ben inciso.

Il versante roccioso a monte del centro abitato, si estende per una lunghezza di circa 1600 m con morfologia accidentata e pendenze elevate.

Alle quote più elevate si hanno costoni rocciosi sub-verticali con tratti meno acclivi ma pur sempre molto ripidi; verso valle l'acclività diminuisce ulteriormente fino a valori compresi fra il 30 e il 40% per la presenza di depositi detritici.

L'altezza complessiva dei costoni supera talvolta i 300 m di altezza; essi sono costituiti da strati e banchi calcarei che presentano piani di discontinuità variamente orientati che suddividono l'ammasso roccioso in blocchi di dimensioni e forma variabili soggetti a fenomeni di crollo.

In effetti l'evoluzione geomorfologica del versante ha dato luogo in passato ed anche di recente a fenomeni di dissesto con crollo a valle di blocchi e massi rocciosi.

La presenza di numerose fratture di vario spessore che si sovrappongono ai giunti di stratificazione e la presenza di cavità di natura carsica determinano un livello intenso di fratturazione che aumenta in corrispondenza di stratificazione più sottile.

Ciò determina la suddivisione dell'ammasso roccioso in blocchi di volume variabile, anche superiori al metro cubo, talora in condizioni di precario equilibrio che possono evolvere in frane di crollo con diversi cinematismi di rottura (scivolamento, ribaltamento e crollo).

L'assetto strutturale della roccia e il procedere della fratturazione ha provocato l'isolamento di blocchi dall'ammasso roccioso retrostante che vengono a trovarsi in situazioni di precario equilibrio.

In relazione alle diverse condizioni geomorfologiche e agli assetti strutturali degli ammassi rocciosi fin qui descritti sono state riscontrate aree soggette a distacco di blocchi da pareti e aree interessate dal distacco e rotolamento di blocchi provenienti da depositi superficiali.

I possibili cinematismi relativi alle diverse situazioni riscontrate nel territorio esaminato sono i seguenti: scivolamento lungo una discontinuità piana, ribaltamento intorno ad un punto, crolli di elementi lapidei non radicati all'ammasso roccioso dal ciglio della parete o dovuti alla presenza di vuoti sottostanti, ribaltamento e rotolamento di blocchi immersi in depositi di copertura per scalzamento al piede.

Le procedure e gli elementi utilizzati per la valutazione della possibilità e le modalità di distacco di blocchi dai fronti rocciosi si è basato in questa sede su un livello qualitativo di analisi dei dati in possesso.

A tal fine sono stati valutati i fattori che possono influenzare la traiettoria e la velocità dei blocchi. In particolare, in relazione ai blocchi è stata considerata la loro altezza e dimensione; riguardo i fronti rocciosi, l'inclinazione della parete; relativamente alle pendici poste a valle delle pareti rocciose, la presenza, la posizione e le dimensioni di eventuali blocchi precedentemente franati, la presenza di coperture vegetali o di altri ostacoli idonei a bloccare o rallentare il

X

3.4 Inquadramento idrogeologico

L'analisi dei caratteri essenziali della circolazione idrica superficiale e sotterranea è stato effettuato in considerazione dei litotipi presenti nel territorio e della loro permeabilità, della capacità di smaltimento delle acque dilavanti, dei possibili fenomeni di alluvionamento e della possibilità di inquinamento delle falde che insistono nel territorio comunale.

L'idrogeologia è determinata dalle caratteristiche di permeabilità dei terreni presenti in affioramento e nel sottosuolo. Essi sono stati suddivisi in quattro gruppi dotati di permeabilità diverse, di seguito elencati. (cfr. TAV. A3 – Carta idrogeologica scala 1:10.000).

Terreni impermeabili (IMP)

Sono rappresentati dalla facies pelitica del Flysch Numidico. La permeabilità è in genere molto bassa ad eccezione dei settori ricoperti da coltri superficiali alterate ed in corrispondenza di lineazioni tettoniche. Generalmente il coefficiente è inferiore a 10-7 cm/s. Tali terreni svolgono il ruolo importante di tamponare l'acquifero carbonatico.

Terreni scarsamente permeabili (SP)

Non sono stati individuati terreni ascrivibili a questa categoria. Tuttavia può essere assimilata a questa categoria la facies pelitica del Flysch Numidico in corrispondenza di lineazioni tettoniche. Per comodità di rappresentazione grafica, in relazione alla modesta entità ed alla scala cartografica, tali terreni non sono stati riportati nella tavola tematica.

Terreni mediamente permeabili (MP)

Appartengono a questo gruppo il detrito di falda, le coltri di detrito, le alluvioni recenti e le calcareniti Quaternarie. Questi litotipi possiedono permeabilità per porosità leggermente variabile in seno al deposito in relazione alla percentuale a granulometrica più fina.

Terreni altamente permeabili (AP)

Sono rappresentati dai depositi di spiaggia e dal complesso carbonatico Mesozoico – Terziario. Questi ultimi possono essere sede di importanti risorse idriche.

La permeabilità in questi terreni è per fessurazione: di conseguenza il coefficiente è variabile nelle diverse direzioni, in funzione della rete di fessurazione. In alcuni casi essi ospitano falde idriche di interesse rilevante che alimentano anche sorgenti; una di esse utilizzata dal Comune a scopo idropotabile.

In particolare, il complesso carbonatico, costituito dai rilievi a Sud del territorio, dotato di una elevata permeabilità per fessurazione, consente una buona infiltrazione (

delle acque piovane che alimentano la falda idrica sotterranea. Queste attraverso le vie preferenziali dell'acquifero alimentano alcune sorgenti poste al contatto con la formazione argillosa che cinge i rilievi carbonatici, talora mascherate dalla presenza di detrito.

Nel territorio in esame è stata comunicata dall'Amministrazione la presenza della Sorgente Santa Rosalia, quale emergenza idrica di interesse comunale.

La normativa vigente prevede aree di salvaguardia per le sorgenti le cui acque sono destinate al consumo umano ed erogate mediante impianto di acquedotto di pubblico interesse.

Tali fonti idropotabili, pur non raggiungendo in senso assoluto quantitativi elevati, costituiscono fonti di approvvigionamento importanti ed, allo stato attuale, insostituibili per l'utenza servita, assumendo, pertanto, un alto valore sociale ed economico e rappresentando, quindi, una preziosa risorsa da tutelare.

Normativa di riferimento

In merito alla identificazione e delimitazione delle aree di salvaguardia destinate al mantenimento e miglioramento delle caratteristiche qualitative delle acque da destinare al consumo umano, il decreto legislativo 11 maggio 1999 n. 152 e le successive modifiche e integrazioni hanno apportato alcune modifiche al DPR 236/88, fino ad allora normativa di riferimento.

La delimitazione e la caratterizzazione delle aree suddette, é stata effettuata, quindi, in osservanza alla suddetta normativa, tenendo debitamente conto della quantità e qualità dei dati in possesso.

La delimitazione delle aree di salvaguardia e i relativi vincoli pertanto vanno visti come uno strumento di protezione delle risorse idriche allo stato attuale di conoscenze. Ciò non toglie che successivi studi specialistici, quale il piano di tutela delle acque, possano portare alla adozione di nuove valutazioni degli ambiti di riferimento che possano mantenere fattori di sicurezza ottimali a protezione delle risorse idriche, tenendo anche conto per quanto possibile delle attività socio-economiche del territorio.

Aree di salvaguardia

Con riferimento al succitato decreto le aree di salvaguardia definite sono le seguenti:

- area di tutela assoluta: tale area ha una estensione pari a 10 metri di raggio a partire dal punto di captazione;
- zona di rispetto ristretta: interessa la porzione di territorio circostante la zona di tutela assoluta ed ha, di norma, un raggio di 200 metri a partire dall'opera di captazione; tuttavia in considerazione dei fattori di vulnerabilità dell'acquifero sopra/

4.0 Valutazione sulla pericolosità geologica

La valutazione della pericolosità geologica del territorio in sede di pianificazione urbanistica è un supporto fondamentale per determinarne i livelli di utilizzabilità. Alla valutazione di tale parametro concorrono fattori di natura diversa che caratterizzano il territorio e i litotipi presenti.

Le caratteristiche litotecniche dei terreni presenti costituiscono certamente un aspetto fondamentale del problema con particolare riferimento ai primi 20 m di spessore. Tale fascia è infatti quella che può influenzare più pesantemente i vari fattori di pericolosità quali la stabilità dei versanti, la presenza di falde superficiali o subaffioranti, il grado di fratturazione e di disgregazione della roccia, la risposta sismica dei siti, etc.

La definizione della pericolosità geologica nasce dall'analisi di tutti gli elementi emersi dallo studio e dalla sovrapposizione di tutti i tematismi riportati nelle altre carte tematiche prodotte. A tale proposito appare opportuno sottolineare che le fenomenologie e le problematiche legate alla pericolosità sismica delle aree studiate non sono state rappresentate nella carta della pericolosità. Talora, infatti, la coesistenza di diverse problematiche in un sito avrebbe comportato la sovrapposizione di numerosi simboli e retini determinando una scarsa leggibilità della carta stessa.

Si è preferito pertanto riportare la pericolosità connessa ad aspetti sismici esclusivamente nella carta delle zone a maggiore pericolosità sismica locale. Ciò, ovviamente, non ha impedito di valutare nel complesso le situazioni di pericolosità e le problematiche presenti nei siti interessati.

A tal fine, infatti, si è tenuto conto della tipologia e del numero di problematiche presenti, escludendo dalla utilizzazione per fini urbanistici quelle aree interessate da rilevanti fenomeni di instabilità, di pericolosità idraulica o di altra natura, o quelle zone in cui coesistevano diverse tipologie di rischio.

Le aree in cui sono presenti fenomeni di degrado meno intensi sono state considerate utilizzabili con l'obbligo di osservare le prescrizioni o le raccomandazioni formulate.

Per altre aree, infine, in cui sono presenti fenomeni di degrado o di dissesto per i quali è opportuno verificare elementi quali ad esempio la presenza e la profondità della falda, lo spessore delle coperture di terreni rimaneggiati, la caratterizzazione della risposta sismica dei terreni, etc. l'utilizzabilità dei siti è stata subordinata alla esecuzione di indagini geognostiche e geotecniche e/o di interventi di sistemazione e

recupero che dovranno interessare i siti in questione o in relazione alla tipologia delle problematiche evidenziate.

In generale le fenomenologie e le problematiche considerate nella valutazione della pericolosità geologica sono raggruppabili in due categorie.

Alla prima appartengono quelle riconducibili direttamente alla attività antropica quali ad esempio la presenza di cave, la presenza di discariche abusive entro gli alvei, la scarsa pulizia degli stessi, l'insufficienza idraulica di attraversamenti e manufatti in genere, la distribuzione irregolare e talvolta caotica degli edifici che hanno modificato o meglio peggiorato le condizioni di equilibrio dei versanti e le modalità di deflusso delle acque superficiali e sotterranee.

Alla seconda categoria afferiscono i fenomeni naturali quali la presenza di dissesti di vario genere, di lineazioni tettoniche, di zone di contatto tra litotipi con diverse caratteristiche fisico-meccaniche, di affioramenti di litotipi con scadenti proprietà litotecniche, di zone interessate dall'azione diretta delle acque incanalate e/o da esondazione.

L'analisi dei suddetti fattori ha consentito l'individuazione e la rappresentazione dei fattori di pericolosità geologica su base cartografica a scala 1:10.000 per tutto il territorio comunale (cfr. TAV.A4 – Carta della pericolosità geologica) e a scala 1:2000 per le aree del centro abitato (cfr. TAV.B4.1/5 – Carta della pericolosità geologica; TAV.B5.1/5 – Carta delle zone a maggiore pericolosità sismica locale).

Nel territorio esaminato sono stati individuati i seguenti fattori di pericolosità che hanno determinato la non utilizzabilità urbanistica delle porzioni di territorio interessate:

- crolli:
- fascia di terreni degradati per fenomeni tettonici;
- zone di influenza diretta delle acque incanalate e alvei in erosione;
- aree esondabili;
- fasce di contatto fra terreni a caratteristiche fisico-meccaniche differenti;
- terreni dotati di scadenti caratteristiche meccaniche.

Sono state, infine, rappresentate le aree di salvaguardia di cui al decreto legislativo n. 152/99 e successive modifiche e integrazioni. relativamente ai alle sorgenti segnalate allo scrivente dall'Amministrazione, attualmente utilizzati per scopi idropotabili.

Di seguito vengono descritti i fenomeni che determinano pericolosità geologica nel territorio esaminato, suddivisi in gruppi secondo il seguente criterio:

- pericolosità per presenza di dissesti;
- pericolosità idraulica;

- pericolosità di inquinamento di risorse idropotabili;
- pericolosità connesse con le caratteristiche fisico-meccaniche dei litotipi presenti.

Il livello di approfondimento e di dettaglio raggiunto è ovviamente da mettere in relazione alla scala dello studio effettuato, alla realizzazione di indagini puntuali nonchè al livello di antropizzazione del territorio. Quest'ultimo aspetto determina, come già accennato, una suddivisione del territorio comunale in due parti.

La prima, coincidente con il centro abitato, ed un'altra coincidente con il resto del territorio comunale interessata da forme di antropizzazione molto rade e generalmente di scarso impatto.

E' ovvio che nelle zone urbanizzate il livello di attenzione è stato maggiore sia in relazione all'interesse socio-economico dei beni e delle attività presenti nel territorio che, fattore certamente non secondario, alle interferenze che le stesse urbanizzazioni hanno provocato e provocano sull'equilibrio idrogeologico del territorio e alle conseguenze che l'alterazione di quest'ultimo può determinare in termini di pericolosità sulle antropizzazioni presenti.

X

4.1. Pericolosità geologica per dissesti

Le procedure e gli elementi utilizzati per la valutazione della pericolosità relativo a frane di crollo sono state basate necessariamente, in questa sede, su un livello qualitativo di analisi dei dati in possesso.

Comunque, valutando che si tratta di fenomeni che si manifestano all'improvviso e con elevata velocità e che i fattori determinanti il dissesto sono ancora attivi, è opportuno considerarli potenzialmente molto pericolosi.

Si è cercato innanzi tutto, individuata l'area di potenziale distacco e le dimensioni degli elementi lapidei in gioco, di determinare il livello di pericolosità relativamente alla probabilità di accadimento dell'evento mediante la valutazione dei fattori che forniscono la propensione al distacco dei blocchi.

A tal fine sono stati presi in considerazione i seguenti indici di instabilità riguardo il distacco di blocchi da pareti rocciose:

- presenza di fratture aperte;
- presenza di blocchi ruotati rispetto all'ammasso retrostante;
- presenza di zone intensamente fratturate;
- eventuali emergenze di acqua alla base dei blocchi;
- presenza di fratture con superfici non alterate.

Riguardo il distacco di blocchi immersi in depositi di copertura:

- presenza di scollamenti tra matrice e blocchi;
- presenza di blocchi parzialmente ruotati nella matrice;
- presenza di blocchi in buona parte isolati rispetto alla matrice;
- presenza di superfici non alterate che testimoniano recenti distacchi;
- emergenze di acqua alla base dei blocchi.

In secondo luogo si è cercato di perimetrare le aree di influenza, intendendo con tale termine sia le zone di transito che quelle di accumulo dei blocchi franati.

Il livello di utilizzazione dei territori esposti a questi fenomeni è strettamente connesso allo stato di attività che nelle cartografie è rappresentato con diversa colorazione ed alle quali si rimanda.

Tuttavia le categorie che regolano l'uso del territorio sono le seguenti:

- non utilizzabili a fini urbanistici. Sono da porre in essere interventi di salvaguardia dell'esistente;
- urbanisticamente utilizzabili a condizione di verifiche geognostiche geotecniche ed opere di salvaguardia, non a fini edificatori;

- urbanisticamente utilizzabili a condizione di verifiche geognostiche e geotecniche e opere di sistemazione;
- non utilizzabili a fini urbanistici. Sono da porre in essere interventi di regimazione idraulica;
- utilizzabili secondo le indicazioni del D.Lgs. 152/99 e successive modifiche ed integrazioni.

4.2 - Pericolosità geologica per esondazione

Per la determinazione delle zone di esondazione del reticolo idrografico esistente nel territorio in esame, al fine di mettere in evidenza le zone a rischio di allagamento e definire le priorità delle sistemazioni idrauliche necessarie, è stato effettuato lo studio idrologico e idraulico del territorio e del reticolo idrografico.

Gli studi sono stati sviluppati con le ipotesi di portata di massima piena per tempi di ritorno 20-50, 100-200 e 400-500 anni, e hanno consentito la elaborazione di una carta in scala 1:10.000 (TAV. A4 – Carta della pericolosità geologica scala 1:10.000) e nelle Tavole in scala 1:2.000 (TAVV.B1.1/5)

In tale elaborato la rappresentazione degli invasi determinati risulta coincidente per tutti i tempi di ritorno calcolati e delle contenute variazioni delle aree inondabili fra i tempi di ritorno, non rappresentabili alla scala della cortografia utilizzate.

L'approccio al problema è stato sviluppato delimitando anzitutto le aree di interesse su opportuna cartografia e verificando la coincidenza con lo stato reale, mediante sopralluoghi.

Sono state fissate per ciascuno dei corsi d'acqua esaminati, delle "Sezioni di Interesse idraulico" definendo le caratteristiche geomorfologiche dei relativi bacini imbriferi (cfr. Tab.11); quindi, sulla base dei dati idrologici (Tabb. 12-16) opportunamente elaborati secondo gli studi suggeriti dalla letteratura in materia, sono state desunte per il sito in esame le curve di probabilità pluviometrica (Tabb. 22-23) dalle quali sono state ricavate le portate di piena al variare del tempo di ritorno (Tabb.26-27).

L'ipotesi semplificativa delle condizioni di moto uniforme in ciascun corso d'acqua ha poi consentito di determinare il livello idrico della situazione di piena in varie "Sezioni di Verifica idraulica" di ciascun corso d'acqua (Tabb. 29-43) e quindi, attraverso opportune interpolazioni, ricavarne le aree di allagamento per i vari tempi di ritorno presi in esame (Tab.44).

La scelta di tali sezioni di verifica, è stata effettuata tenendo conto della presenza di manufatti che potessero determinare stati critici per il deflusso delle acque quali ad esempio gli attraversamenti stradali.

Le "Sezioni di Interesse idraulico" ove sono state calcolate le portate di piena, vengono riportate nella (TAV. A4) e le corrispondenti caratteristiche morfo-

TAB. 11	CA	CARATTERIS	FICHE DE	TICHE DEI BACINI SOTTESI DALLE SEZIONI DI INTERESSE INRAIII ICO	OTTES! D/	ALLE SEZ	NI IO INOI	TERESSE	IDRAIII IC	c	
			Bacino	Lunghez	Quote [m.s.l.m.]	.s.l.m.]	Dislivello H media	H media	Pendenza	Tc	Tc
Localita	Torrente	Interesse	sotteso	Asta prin.					media del	media del Giandotti	Ventura
		n°	[kmd]	[km]	max	min	[m]	[m]	canale	Ξ	Ξ
Autostrda- foce	Ciachea	-	30	11,8	006	2	898	449	0.076	2.3	2.5
A monte dell'autostrada	=	12				5					0.1
Fra l'autostrada e le FS	=	1b				20					
a valle del ponte FS	Ciachea	10	29	10.8	006	27	873	437	0.081	- 23	2.4
Ponte FS	=	1d				30				î	1
Ponte sulla SS113		16				33					
A monte della SS113		11				42					
C.da Luogo Grande		19				48					
" Ponticello stradale	5	1h				50					
Villaggio Sommariva	Ciachea	1;	26	9.6	006	70	830	415	0.086	2.4	2.2
Ponticello stradale	=	=				72		2		4,1	2,2
Parchiscieddu	Ciachea	1m	20	8.8	006	85	815	408	0.003	10	70
Inferura	V.ne Areddara	2	2	3,0	850	70	780	390	0,260	6,-	P. 0
Ponticello stradale	-	2a				130			201	2	1
Parchisceddu	V.ne Susinna	က	5	4,0	630	84	546	273	0 137	1	8.0
		The residence of the last of t		-				i			-

. . .

1

portate lungo i vari corsi d'acqua in etto per la determinazione delle portate, emetrici disponibili nella zona.

i dei bacini, e quindi della brevità dei zione sottoposte ad elaborazione sono cioè quelle fornite esclusivamente dalle

uto alla elaborazione dei dati disponibili così determinate le precipitazioni per 3 anni.

uzione dei valori massimi annuali delle infrontata però con la Legge a Due pretazione della intensità di pioggia. La erno del Progetto Finalizzato del CNR uata anche per il territorio siciliano.

i due metodi è stata adottata la stessa issi.

alle stazioni di Isola delle Femmine, S. olta degli Annali Idrologici del Servizio elaborazioni, hanno fornito le curve di

che di ciascuna stazione, quali: quota ero di anni di dati disponibili.

netodo di Gumbel, sono stati presi in riometrici della stazione di S. Martino di "scroscio" del bacino in esame, con itelativi rispetto agli altri pertanto, retta valutazione della pluviometria della

4.2.1 Delimitazione dell'are caratteristiche fisiche d

A seguito del tracciamento d presenti nel territorio in studio si è pre luoghi al fine di:

- 1) verificare l'attendibilità della c
- 2) evidenziare le zone ove i rec modificato il naturale reticolo idrografici

E' stato così possibile circoscriv zone di esondazione al verificarsi degl 200 e 50 anni

I bacino idrografico oggetto del prove si innestano il vallone Areddara ed

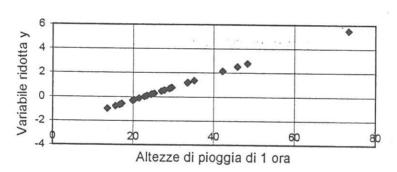
Tab.12	CONSIST	ENZA DEG	LI ANNI DI	FUNZIONAM	IENTO DE	LLE STA	AZIONI PL	UVIOGRAI	FICHE
Stazione	Isola F.ne	Cinisi	Partinico					.011001041	TOTIL
Pluvioregistr.	Pr	P	Pr	S.Martino Pr		-			
Q s.l.m.	4	1	189	570	-	-			
Inizio funz.	1959	1923	1919	1918	+	-			
Anno	1.000	1020	1313	1910					
1951			 	x	-	+			
1952					-				
1953		 	1	X	-	-			,
1954			X	X	-	-			
1955					-	-			
1956			X		-	-			
1957		 				1			
1958		-							
1959		 	X	X					
1960	Х		X	X					
1961		-	X	X					
1962	Х	-		X					
			X	X					
1963	X		X	X					
1964	Х		Х	X					
1965	Х		Х						
1966	X		X	X			,		T
1967	X		X	X					
1968	Х		Х	х					
1969	X		Х	х					
1970	Х		x	х					
1971	Х		Х				1		
1972	Х		Х	х					
1973	Х		х	Х					
1974	Х		х	X					+
1975	X					-		-	
1976	Х		Х	X					+
1977	Х		X	X			-		
1978	X		x				-		-
1979	X		^	X					
1980	X		\ \ \ \ \	- v					
1981	X		X	X					
1982	X		X	X					
1983	X		Х						
1984									
1985	X		Х						
1986	X	X	Х	Х					
1987	X	Х	Х	X					
1988									
	X			Х					
1989	X	X	Х	Х					
1990	X	Х	Х	х			1		
1991	X	Х	Х						
1992	Х	Х	Х	х					
1993	Х	Х		х					1
994	Х	Х		х					
995		Х					+		
996		Х					1		
otale	33	10	31	31				+	

Tab.13	Dati di piog	gia di mass	sima intens	ità [in mm] i	registrati da	lla stazione	pluviomet	rografica
	Isola delle F	emmine	Anni 1951-	1996				- Granou
								
Ŷ.				Durata [in o	orel			
	Anno	1	3	6	12	24		Variabile
								per t=1ora
	1951							por t- Tore
	1952	39,2	48,2	57,4	66,0	76,4		1,9
	1953				,	,,,,		-1,9
	1954							-1,9
	1955							-1,9
	1956			* y	tag ka sa	~		-1,9
	1957							-1,9
	1958	13,2	25,6	35,6	50,4	90,2		-0,6
	1959	22,0	33,2	34,6	34,6	45,2		0,2
	1960	,		0.,0	04,0	45,2		1.0
	1961	30,4	33,4	33,4	53,0	62,6		-1,9
	1962			30,4	55,0	02,0		1,0
	1963	23,8	25,4	38,0	60,4	81,2		-1,9
	1964	40,0	87,6	110,0	113,8	113,8		0,4
	1965	22,6	25,8	32,4	45,0	65,0		1,9
	1966	19,2	35,2	52,0	67,2	121,2		0,3
	1967	59,4	69,4	69,4	69,4	70.6		0,0
	1968	15,6	16,8	27,2		70,6		3,8
	1969	11,0	22,0	27,0	34,0	35,0		-0,4
	1970	27,0	37,8		28,0	41,2		-0,8
	1971	14,2	37,0	42,8	49,0	52,2		0,7
	1972	12,4	29,8	41,2	58,6	85,6		-0,5
	1973		20,4	31,8	33,8	48,8		-0,7
	1974	21,4	52,8	66,4	108,6	129,4		0,2
	1975	16,4	24,6	30,2	42,8	45,2		-0,3
	1976	38,2	65,2	65,4	67,8	83,0		1,8
	1977	23,2	31,0	42,0	50,0	65,4		0,3
	1978	14,8	14,8	14,8	22,0	29,4		-0,5
	1979	18,0	26,6	31,2	52,2	84,2		-0,2
		61,0	104,8	128,4	128,6	136,6		4,0
	1980	27,0	27,6	32,0	44,0	75,0		0,7
	1981	60,0	121,2	126,6	126,6	126,6		3,9
	1982	36,0	37,0	43,2	51,6	64,8		1,6
	1983	30,0	51,8	65,8	70,6	79,8		1,0
	1984	12,2	15,4	16,6	23,4	33,2		-0,7
	1985	11,0	21,2	36,2	46,0	65,4		-0,8
	1986	18,0	28,8	43,8	60,0	67,8		-0,2
	1987							-1,9
	1988	40,6	49,4	49,4	49,4	56,2		2,0
	1989	18,0	26,4	35,4	48,6	59,2		-0,2
	1990	26,4	27,2	43,8	61,6	71,2		0,6
	1991	22,2	22,2	33,0	56,0	80,2		0,0
	1992	19,0	30,2	44,2	46,4	53,2		
	1993	20,8	25,8	43,2	55,6	72,8		-0,1 0,1
	1994	16,8	33,2	41,2	47,2	52,6		-0,3
	1995		-	.,	,=	52,0		
	1996							-1,9
	Media (M)	25,74	38,51	47,59	57,78	72,01		-1,9
	Scarto (S)	13,41	24,15	26,05	25,35	26,77		
	Gumbel:		_ 1,10	20,00	20,00	20,77		
	K	0,10	0,05	0,05	0,05	0,05		
	m	19,71	27,65	35,87	46,38	59,96		

Tab.14	Dati di piogo	jia ul Illassii	na mens	ita (iii mm) r	egistrati da	iia stazione	piuviometi	rografica
	Cinisi	Δ	nni 1951-	1996				
				Durata [in o				
	Anno	1	3	6	12	24		Variabile
								per t=1or
	1951							-4,
	1952							-4,
	1953	,			.,,		,	-4
	1954				1			-4, -4, -4, -4, -4, -4,
1	1955							-4
	1956							-4
	1957							-4
	1958							-4
*	1959							-4
	1960							-4,
	1961							-4,
	1962							-4,
	1963							-4,
	1964							-4,
	1965							-4,
	1966							-4,
-	1967							-4,
	1968							-4,
	1969							-4,.
	1970							-4,
	1971							-4,
	1972							-4,
	1973							-4,
	1974							-4,
	1975							-4,
	1976							-4,
	1976							-4, -4, -4, -4, -4, -4,
· ·								-4,
	1978							-4,
	1979							-4,
	1980							-4,
	1981							-4,
	1982							-4,
	1983							-4,
	1984			**. *		- 1		-4,
	1985	11,6	21,2	36,2	46	65,4		-1,
	1986	20,2	30,6	37,2	44	59,4		-0,
	1987							-4,
	1988							-4
	1989	27,2	27,4	41	62	80,6		-4,2 1,3
	1990	33,4	38,4	64,2	85,8	95,4		2,
	1991	28,4	29	40,0	65	90		1,
	1992	19,8	38,8	44,2	47,6	59,6		0.5
	1993	20,4	22,6	39,6	49,2	71,6		-0,2
	1994	22	46,8	57	68	73,2		-0,
	1995	33.2	43,4	54,2	90	118,6		0,2 2,5
***************************************	1996	33,2 21,8	35	54,2	67,4	81,2		2,3
	Media (M)	23,80	33,32	46,78	62,50			0,2
	Scarto (S)	6,40	8,15	9,27	15,41	79,50		
	Gumbel:	0,40	0,10	3,21	15,41	17,31		
	K	0,20	0,16	0,14	0.00	0.07		
	m	20,92	29,65	42,61	0,08 55,57	0,07 71,71		

Tab.15	Dati di piogg	gia di massir	na intens	ità [in mm] i	registrati da	la stazione	pluviomet	rografica
	Partinico	Α	nni 1951-	1996			,	
				Durata [in o	orel			
	Anno	1	3	6	12	24		Variabile y
								per t=1ora
1	1951							-2,5
	1952		-					-2,5
	1953	19,8	43,6	' 65	108,8	129,2		-0,3
	1954		,.		100,0	120,2		-2,5
	1955	27	30,4	51,8	83,8	125,6		0,5
	1956		00,1	01,0	00,0	123,0		-2,5
	1957							-2,5
	1958	17	38	66	95	152		-2,5
	1959	17,2	22,4	41,4	59,4	74		-0,6
	1960	42,2	63,6	66,8	75,6	78		-0,6
	1961	72,2	05,0	00,0	75,0	70		2,1
	1962	21,4	40	E4 0	90	0.4		-2,5
	1963	24,6		54,8	80	91		-0,1
	1964	25,2	31,2	37	51,4	64,6		0,2
	1965		44	56,6	67	67		0,3
	1966	33,4	36,2	53,2	103,2	144,8		1,2
	1967	33,6	38,8	45,4	51,8	73,6		1,2
	1968	73,2	84,4	88,8	90	91,6		0,3 1,2 1,2 5,5 1,2
		33,4	41,4	48,6	58,2	64,8		1,2
	1969	20,2	32,4	40	52,8	81,4		-0,3
	1970	17,2	27,6	32,6	35,8	49,8		-0,6
	1971	22,8	41,2	46,6	50,8	118,6		0,0
	1972	25,2	25,8	47	59,4	67,4		0,3
	1973	25,2	41,6	82,4	132,2	164,8		0,3
	1974	15,6	20,8	39	52,6	53,4		-0,8
	1975							-2,5
	1976	48,2	50	50,6	70	103		2,8
	1977	13,6	18	24	41,4	53,4		-1,0
	1978	16,6	29,4	34,4	47	69,2		-0,7
	1979							-2,5
	1980	29,4	34,2	45,8	55,8	72,6		0,7
	1981	27,6	56,2	76,8	89,8	122,2		0,5
	1982	29	30,8	40,6	48,8	60,2		0,7
	1983				,0	00,2		-2,5
	1984	24,4	24,8	26,6	28	47,8		0,2
	1985	35,2	39,6	50	85,8	88,6		1.4
	1986	45,8	48,2	48,2	51	75		1,4
	1987	,	.0,2	70,2	- 31	75		2,5
	1988							-2,5
	1989	27,8	35,4	44,8	54.4	66.9		-2,5
	1990	23,4	51	58,2	54,4 65,6	66,8		0,6
	1991	29,6	29,6	35,4		76,2		0,1
	1992	19,8	38,8		52,2	73,4		0,8
	1993	13,0	30,0	44,2	47,6	59,6		-0,3
	1994							-2,5
	1995							-2,5 -2,5
	1996							-2,5
		27.00	00.07	10 ==				-2,5
	Media (M)	27,89	38,37	49,76	65,97	85,79		
	Scarto (S)	11,77	13,18	14,86	22,97	30,92		
	Gumbel:							
	K	0,11	0,10	0,09	0,06	0,04		
	m	22,59	32,44	43,08	55,64	71,89		

Tab.16	Dati di piogg	gia di massir	na intensi	à [in mm] re	gistrati dalla	stazione	pluviometi	ografica
	S.Martino o	delle Scale.		Anni 1951-1	996			
				Durata [in or	e]			
	Anno	1	3	6	12	24	***	Variabile
								per t=1ora
	1951	30	35,6	42,8	63,6	92,2		0,8
	1952	14,4	27	51,4	66,6	69,8		-0,9
	1953	38,8	49,8	66,8	107,4	117,8		1,7
	1954							-2,4
	1955							-2.4
	1956		1					-2.4
	1957							-2.4
	1958	21,6	40,4	63	99,2	148		-2,4
	1959	44,5	62	77	92,6	106,4		-2,4 -2,4 -2,4 -0,1 2,3 3,7
	1960	57,8	73,4	73,6	82	82,2		2,3
	1961	21,6	23	26,8	37	48,6		-0,1
	1962	21,2	40,2	46,8	65,8	123		-0,1
	1963	42	44,2	44,2	44,2	49		-0,1
	1964	26,6	42,8	49,4	61,2	61,2		2,0
	1965	20,0	12,0	73,7	01,2	01,2		0,4
	1966	32,6	33	36,8	52,4	71.6		-2,4
	1967	51,6	68,6	70,2	70.6	71,6		1,1
	1968	54,6	56,8	70,2	70,6	70,6		3,1
	1969	20,2	25,6	61,6	61,8	62,2		3,4
	1970	20,2		29,6	32,2	62,2		-0,3
	1971	21	40,2	51	52,4	52,4		0,5
	1972	16.0	20.0	0.1.1				-2,4
	1973	16,2	22,8	34,4	52,2	54,4		-0,7
	1973	18,6	24,8	30,2	47,4	74,2		-0,4
		15,2	28,2	30,6	33,4	43,8		-0,8
	1975							-2,4
	1976	29,8	34,4	46,4	75,4	84,8		0,8
	1977	11	16,6		24,4	32,4		-1,2
	1978	18,6	23,2	30,2	42,8	54,2		-0,4
	1979							-2,4
	1980	20,6	27	33,2	42,6	54,4		-0,2
	1981	44,4	47,2	66,4	76,4	99,4		-0,2 2,3
	1982							-2.4
	1983							-2,4 -2,4 -2,4
	1984							-24
	1985	32,4	33,2	38,4	68,6	70,2		1,0
	1986	21,8	24,2	24,6	30,2	42,8		-0,1
	1987					,-		-2,4
	1988	33,2	34,6	34,6	60,6	62,8		1,1
	1989	17	27,6	34,4	60,6	62,8		-0,6
	1990	24,6	27,6	38	66,8	85,4		0,2
	1991				00,0	00,4		0,2
	1992	23,8	30,2	35,6	39,6	48,4		-2,4
	1993	17,8	20,6	29,2	39,4	59		0,1
	1994	23	51,4	62,8	80,4			-0,5
	1995		51,7	02,0	00,4	86,4		0,0
	1996							-2,4
	Media (M)	28,08	36,69	11 17	50.07	74.05		-2,4
	Scarto (S)	12,18		44,47	58,87	71,35		
	Gumbel:	14,10	14,13	15,87	20,27	25,59		
	K	0.11	0.00	0.00	0.00			
	m	0,11 22,61	0,09	0,08	0,06	0,05		
	101	22,01	30,33	37,34	49,76	59,84		


Fig. 1 Appendice alle Tabb. 13 - 16

Distribuzione di Gumbel Staz. di Cinisi

Distribuzione di Gumbel Staz. di Partinico

Distribuzione di Gumbel Staz. di S.Martino

Sulla base di queste osservazioni non si è operata nessuna riduzione dell'altezza di pioggia in rapporto alla minor quota media dei bacini in esame, rispetto alla stazione pluviografica in esame.

Ugualmente non si sono operate variazioni in rapporto all'accrescersi della superficie dei bacini date le modeste dimensioni degli stessi ed in considerazione del fatto che particolari meteore caratterizzate da forte intensità di pioggia ed in movimento lungo il bacino possono provocare piene superiori a quelle corrispondenti ad una precipitazione uniforme di pari intensità contemporanea su tutto il bacino.

Per consentire un confronto più immediato fra i due metodi, in Tabb. 24 e 25 sono riassunti i valori di pioggia di massima altezza per diverse durate e tempi di ritorno, calcolati con le espressioni riportate nella tabelle 22 e 23.

Dall'analisi di questi valori si deduce che le Legge a Due Componenti fornisce valori leggermente inferiori a quelli ricavati dalla Legge di Gumbel per durate inferiori alle 3 ore e per tutti i tempi di ritorno; nel complesso, però, i due metodi hanno fornito risultati quasi coincidenti, a conferma delle elaborazioni effettuate.

Si stabilisce per i successivi calcoli dell'onda di piena di considerare i valori ottenuti dalla Legge a Due Componenti in quanto i dati esaminati sono più numerosi e già correlati agli altri bacini.

4.2.2.1 Determinazione della curva di probabilità pluviometrica

L'elaborazione dei dati relativi alle stazioni considerate, è stata effettuata con il metodo della Legge Probabilistica di Gumbel, nonché col metodo statistico della Legge a Due Componenti.

Non disponendo, per le piogge di durata inferiore ad un'ora, di dati pluviometrici sufficienti per una elaborazione statistica, è stata utilizzata l'espressione monomia sulle relazioni che intercorrono tra l'intensità di una pioggia della durata di un'ora e le intensità corrispondenti della stessa pioggia (V. Bollettino 1-2/89 Ord. Ing. di Palermo: Pubb. Ferreri e Ferro).

Questa formula, la cui espressione è

$$h_{t,T} / h_{60,T} = 0,208 \times t^{0,386}$$

consente di determinare immediatamente il rapporto fra le altezze di pioggia $h_{t,T}$ relativa alla durata t di 60 minuti e tempo di ritorno T e quella $h_{60,T}$ di durata 60 min e pari tempo di ritorno.

Nelle Tabb.22 e 23 sono riportate le espressioni matematiche delle curve di probabilità pluviometrica, ottenute per i due metodi statistici esaminati e per i tempi di ritorno di 20, 50, 200, 300, 400 e 500 anni.

4.2.2.2 Applicazione della legge di Gumbel

La serie dei dati registrati nelle stazioni di Isola delle Femmine, S. Martino, Cinisi e Partinico,, è stata all'attualità pubblicata sino all'anno 1996, ed è raccolta nelle Tab.13-16.

Le elaborazioni statistiche sono state effettuate per tutte le stazioni, anche se è stata successivamente utilizzata solo quella di S. Martino per le seguenti motivazioni:

- a) maggiore numero di dati disponibili;
- b) maggiore vicinanza rispetto all'area di interesse;
- c) valori medi più elevati delle precipitazioni per le diverse durate, che escludono l'opportunità di elaborare dati di stazioni più lontane, ma indicanti rischi potenziali maggiori.

I dati delle stazioni pluviometriche sono stati elaborati statisticamente adattando la loro distribuzione empirica di frequenza alla legge teorica di probabilità di Gumbel.

Si ricorda che tale legge si richiama alla "legge di massimo valore" secondo la quale il valore massimo annuale di una data grandezza (nel caso in esame l'altezza di pioggia d'assegnato intervallo di tempo inferiore o eguale a quello di 24 ore) può interpretarsi come il massimo valore di un campione di N dati estratto dalla infinita popolazione di valori di quella grandezza verificatisi nel passato e che possono verificarsi nel futuro.

Nel caso in esame, il campione costituito dagli N valori massimi di pioggia di assegnato intervallo di tempo Δt che si riscontrano in un anno.

Al variare del campione prelevato il massimo annuale di quella grandezza assegnata, indicata con riferimento all'altezza di pioggia di intervallo generico $\Delta t = i$ con il simbolo h_{max} , i, assume valori diversi, i quali sono distribuiti secondo una propria legge probabilistica.

La distribuzione di Gumbel individua per la probabilità S che si verifichino valori inferiori o al più eguali ad un generico valore massimo h_{max} , i, l'espressione

$$S(y) = [(e)^{-e}]^{-y}$$

nella quale la variabile ridotta y è rappresentata a sua volta dall'espressione

$$y = K (h_{max}, i^{-m})$$

con k e m parametri della legge.

Nella suddetta espressione m rappresenta il valore modale della popolazione della variabile h_{max} , i; quest'ultimo valore è legato alla media M della popolazione stessa dell'espressione

$$M = m + (0,577 / K)$$

Lo scarto quadratico medio S della popolazione è legato al parametro K, secondo la relazione

$$S = \sqrt{(6 * K)}$$

La stima dei parametri K ed m della legge si potrà effettuare quindi secondo il metodo dei momenti tramite le espressioni soprariportate previa stima della media M e dello scarto quadratico medio S dei dati di pioggia di data durata costituenti i campioni disponibili.

Questi valori sono riportati nelle Tabb. 13-16

Si possono quindi calcolare le altezze di pioggia di assegnato tempo di ritorno h_{max} , T, utilizzando la legge probabilistica di Gumbel in forma inversa:

$$h_{max}$$
, T = [m - 1/K ln |ln (I-I/T)|]

Tali valori, calcolati per tempi di ritorno di 20,50, 100,200, 400,500 anni e per la durata di 1, 3, 6, 12 e 24 ore, non sono stati ragguagliati alla superficie dei bacini data la limitata estensione delle superfici in studio, agendo così in favore di sicurezza.

Successivamente i valori h_{max} , T sono stati interpolati con il metodo dei minimi quadrati, secondo la funzione h_T =atⁿ a parametro tempo di ritorno T. I risultati di queste elaborazioni sono riportati in Tab. 22 .

Queste elaborazioni confermano l'opportunità di utilizzare solamente i dati della stazione di S. Martino.

4.2.2.3 Legge a Due Componenti

Per arricchimento dello studio idrologico, le curve di probabilità pluviometrica sono state determinate anche utilizzando il modello regionale che si basa sull'utilizzazione della Legge a Due Componenti.

Rimandando alla pubblicazione originale per una descrizione più dettagliata di tale metodo, che estende al territorio siciliano una impostazione concettuale sviluppata per tutto il territorio nazionale dal Gruppo Catastrofi del Consiglio Nazionale delle Ricerche, in questa sede si vogliono solamente riassumere le caratteristiche essenziali del metodo e la specifica legge adottata nel caso in esame.

Si basa sulla ipotesi di descrivere gli eventi "normali" di pioggia e quelli "speciali" come appartenenti a due differenti distribuzioni di Gumbel.

L'osservazione empirica dei campioni dei massimi annuali di precipitazioni di breve durata (Tab. III, parte I, Annali Idrologici del Servizio Idrografico Italiano) porta spesso a riconoscere l'esistenza di alcuni valori eccezionali estremamente più elevati degli altri (outliers).

La peculiarità del modello a due componenti TCEV (Two Component Extreme Value distribution) è proprio quella di tradurre in termini statistici la differente provenienza degli estremi idrologici riconducendosi formalmente al prodotto di due funzioni di probabilità di tipo Gumbel. La prima descrive una variabile che assume valori non elevati ma frequenti (componente "base " o "ordinaria"), mentre la seconda genera eventi più rari ma mediamente più rilevanti (componente "straordinaria").

I bacini imbriferi oggetto di studio ricadono nella sottozona A (Ovest) della Sicilia e per essa vale l'espressione (I) del modello, che fornisce il valore della variabile ridotta x'_{t,T}.

Da questa si può derivare il valore della variabile H' _{t,T} tramite la (IV) e la (V) in funzione dei parametri a ed n che definiscono la legge monomia che interpreta i valori medi della pioggia di massima intensità per diverse durate.

Nel caso in esame, per le stazioni più vicine si ricavano dalla Tab. 21a i seguenti valori:

Staz.:	Isola delle F.ne	S. Martino	Pa	rtinico
	a= 21,7	28,2		21,2
*	n= 0,2968	0,3327	•	0,3120

Da una media ponderata e da una valutazione delle iso-a ed iso-n, si assume per a=24,0 ed n=0,3300.

mc (t) = a
$$t^n$$
 (V)
mc(t) = a t^n = 24 $t^{0.33}$

Si verifica che $x'_{t,T}$ è quasi costante (variazione dell'1%) per la durata della pioggia variabile.

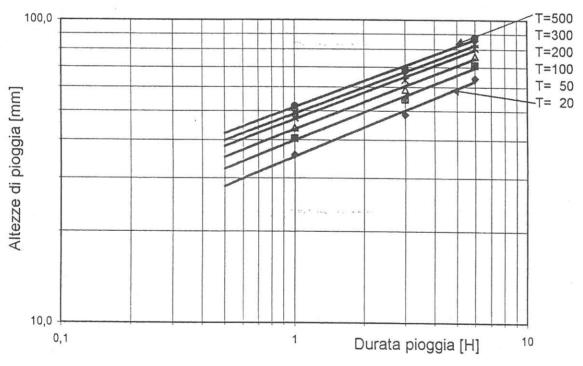
$$x'_{t,T} = 0.5391-0.001635 t+(0.000221 t^2+0.00117 t+0.9966)log T$$
 (I)

Per le altezza di pioggia di durata pari a tc, H'_{t,T} [mm], si ricavano i relativi valori in funzione del tempo di ritorno T [anni] e per le altezze di pioggia di durata 1 ora, sono state ricavate le **curve di probabilità pluviometrica** riportate nelle tabb.22 e 23

$$x_{t,T} = x'_{t,T} m(t)$$
 (IV)

che definiscono la legge monomia che interpreta i valori medi della pioggia di massima intensità per diverse durate.

Per durate inferiori all'ora è stata adottata la formula riportata nel paragrafo precedente .



TAB. 18 Altezze di pioggia in [mm] derivanti dall'applicazione della legge di Gumbel Curve di probabilità pluviometrica Stazione di Cinisi - Serie storica 1951-1996

K	0,20	0,16	0,14	0,08	0,07
m	20,92	29,65	42,61	55,57	71,71

			Durata [in c	re]				
T	1	3	6	12	24	a	n	Coeff. Rec
20	35,7	48,5	64,1	91,2	111,8	35,0	0,321	1,038
50	40,4	54,5	70,8	102,4	124,4	40,0	0,310	
100	43,9	58,9	75,8	110,8	133,8	43,0	0,302	
200	47,3	63,3	80,9	119,2	143,2	47,0	0,300	
300	49,4	65,9	83,8	124,0	148,7	49,0	0,290	
500	51,9	69,1	87,5	130,2	155,6	51,0	0,290	

Curve di probabilità pluviometrica T = 20 - 500 anni

$$y = 51,485x^{0,2885}$$

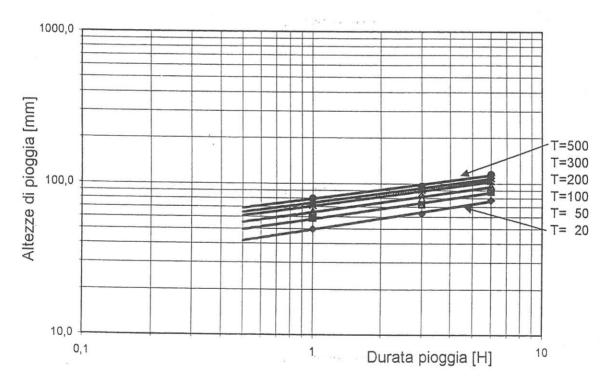
$$y = 48,927x^{0,2924}$$

$$y = 46,895x^{0,2957}$$

$$y = 43,417x^{0,3021}$$

$$y = 39,928x^{0,3095}$$

$$y = 35,273x^{0,3215}$$


A The second of the second of

TAB. 19 Altezze di pioggia in [mm] derivanti dall'applicazione della legge di Gumbel Curve di probabilità pluviometrica Stazione di Partinico - Serie storica 1951-1996

K	0,11	0,10	- 0,09	0,06	0,04
m ·	22,59	32,44	43,08	55,64	71,89

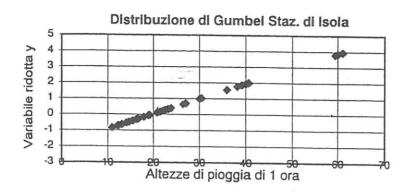
			Durata [in	ore]				×
T	1	3	6	12	24	а	n	Coeff. Reg
20		63,0	77,5	108,8	143,5	49,4		1,039
50	58,4	72,5	88,3	125,5	165,9	57,9	0,227	1,039
100	64,8	79,7	96,4	138,0	182,8	64,2	0,218	1,039
200	71,2	86,9	104,4	150,5	199,5			1,040
300	74,9	91,0	109,1	157,7	209,3		0,207	1,040
500	79,6	96,3	115,0	166,9	221,6	78,9	0,202	1,040

Curve di probabilità pluviometrica T = 20 - 500 anni

$$y = 78,907x^{0.2024}$$

$$y = 74,25x^{0,2068}$$

$$y = 70,552x^{0,2107}$$


$$y = 64,22x^{0,2183}$$

$$y = 57,867x^{0,2274}$$

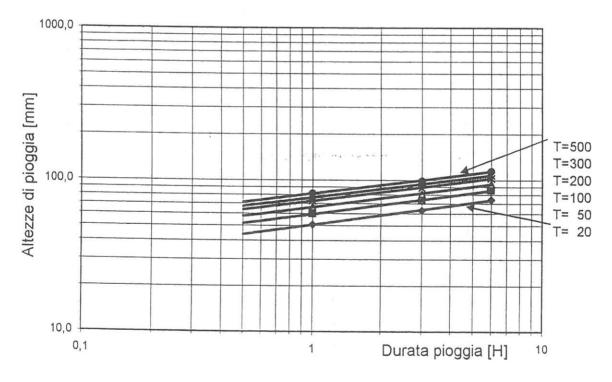
$$y = 49,39x^{0,243}$$

Fig. 7 Appendice alle Tabb. 13 - 16

Distribuzione di Gumbel Staz. di Cinisi

Distribuzione di Gumbel Staz. di Partinico

Distribuzione di Gumbel Staz. di S.Martino


B

TAB. 20 Altezze di pioggia in [mm] derivanti dall'applicazione della legge di Gumbel Curve di probabilità pluviometrica Stazione di S.Martino delle Scale - Serie storica 1951-1996

K	0,11	0,09	0,08	0,06	0.05
m	22,61	30,33	37,34	49,76	59,84

		D	urata [in ore	e]				
T	1	3	6	12	24	a	n	Coeff. Reg
20	50,8	63,0	74,1	96,7	119,1	50,6		
50	59,6	73,3	85,6	111,4	137,7	59,4	0,200	
100	66,3	81,0	94,2	122,4	151,6	66,0	0,195	
200	72,9	88,7	102,8	133,4	165,5	72,6		1,029
300	76,7	93,1	107,9	139,9	173,6	76,4		1,029
500	81,6	98,8	114,2	147,9	183,8	81,3	0,186	

Curve di probabilità pluviometrica T = 20 - 500 anni

$$y = 81,282x^{0,1864}$$

$$y = 76,444x^{0,1888}$$

$$y = 72,601x^{0,1909}$$

$$y = 66,021x^{0,1952}$$

$$y = 59,417x^{0,2003}$$

$$y = 50,605 \times 0,2092$$

X

Espressioni delle curve di probabilità pluviometrica "H" e di Intensità di pioggia "I", in funzione dei Tempi di ritormo "T" ricavati dai due metodi

TAB. 22

t>=1 ora

				In
Т	H[mm]	l [mm/h]	H[mm] ,	l [mm/h]
,	Guml	bel	Legge du	e comp.
20	51 *t ^{0,209}	51 *t ^{0,791}	44 *t ^{0,333}	44 *t ^{-0,667}
50	59 *t ^{0,200}	59 *t ^{0,800}	54 *t ^{0,333}	54 *t ^{-0,667}
100	66 *t ^{0,195}	66 *t ^{0,805}	61 *t ^{0,334}	61 *t ^{-0,666}
200	73 *t ^{0,191}	73 *t ^{0,809}	68 *t ^{0,334}	68 *t ^{-0,666}
300	76 *t ^{0,189}	76 *t ^{0,811}	72 *t ^{0,334}	72 *t ^{-0,666}
500	81 *t ^{0,186}	81 *t ^{0,814}	78 *t ^{0,335}	78 *t ^{-0,665}

TAB. 23

t<=1 ora

Т	H[mm]	I [mm/h]	H[mm]	l [mm/h]
	Gum	bel	Legge du	e comp.
20	51 *t ^{0,386}	51 *t ^{-0,614}	44 *t ^{0,386}	44 *t ^{-0,614}
50	59 *t ^{0,386}	59 *t ^{-0,614}	54 *t ^{0,386}	54 *t ^{-0,614}
100	66 *t ^{0,386}	66 *t ^{-0,614}	61 *t ^{0,386}	61 *t ^{-0,614}
200	73 *t ^{0,386}	73 *t ^{-0,614}	68 *t ^{0,386}	68 *t ^{-0,614}
300	76 *t ^{0,386}	76 *t ^{-0,614}	72 *t ^{0,386}	72 *t ^{-0,614}
500	81 *t ^{0,386}	81 *t ^{-0,614}	78 *t ^{0,386}	78 *t ^{-0,614}

4

Altezze di pioggia "H" [mm] in funzione della durata "t" [ore] e del Tempo di ritorno "T"[anni], deducibii dall'applicazione dei due metodi.

TAB. 24		Gur	mbel	. KIK			
		2200	t				
Т	0,2	0,5	1	3	6	12	24
20	27	39	51	63	74	97	119
50	32	46	60	73	86	111	138
100	36	51	66	81	94	122	152
200	39	56	73	89	103	133	165
300	41	59	77	93	108	140	174
500	44	62	82	99	114	148	184

TAB. 25		Leg	ge due con	nponenti			
			t				
т	0,2	0,5	1	3	6	12	- 24
20	24	34	44	63	80	102	137
50	29	41	54	77	97	125	168
100	33	47	61	88	111	142	192
200	37	52	68	98	124	159	216
300	39	55	72	104	132	169	230
500	42	59	78	112	141	182	247

A A

4.2.3.1 Determinazione dei tempi di corrivazione

Tutte le formule comunemente usate hanno limiti di attendibilità ben noti e maggiore o minore validità a seconda delle dimensioni dei bacini esaminati. L'uso di più metodi consente di ridurre le possibilità di errore e, soprattutto, di adottare valori certamente scelti secondo criteri di sicurezza.

I tempi di corrivazione sono stati calcolati con le formule di Giandotti e Ventura:

- Giandotti tc = $(4 \sqrt{S+1.5} L)/(0.8\sqrt{h})$ [ore] per S>10 km²

- Ventura tc = 7,63 $\sqrt{(S/i)}$. [min] per 1<S<10 km² dove:

S= superficie del bacino in km²

L= lunghezza dell'asta del bacino in km

h= altitudine media del bacino con origine nella sezione considerata

i= pendenza media del bacino

I tempi di corrivazione sono stati calcolati per ciascun corso d'acqua relativamente alle sezioni più a monte dell'area oggetto di studio; i risultati ottenuti dall'applicazione delle due formule sono riportati per le "Sezioni di Interesse idraulico" in Tab.11.

4.2.3.2 Intensità di piogge critiche e coefficiente di deflusso

Per quanto riguarda l'adozione dei coefficienti di deflusso, nel quale si è conglobato anche il coefficiente di ritardo, si è tenuto conto, delle caratteristiche (tipo e densità) della utilizzazione del suolo, dell'incidenza dei terreni prevalentemente impermeabili, delle caratteristiche morfologiche.

Ciò ovviamente in funzione di piogge intense e di breve durata. Il coefficiente si è considerato variabile anche in relazione all'entità dell'evento e quindi in funzione del tempo di ritorno.

4.2.3 Determinazione dei parametri idrologici dei bacini

Nella ricostruzione dell'onda di piena intervengono i seguenti parametri:

tempo di corrivazione, corrispondente al tempo impiegato da una particella d'acqua a coprire la distanza dal punto del bacino idraulicamente più lontano alla sezione di interesse; esso dipende oltre che dalla lunghezza e pendenza dell'asta principale, anche dall'ampiezza e dalla forma del bacino;

intensità di pioggia critica, corrispondente all'altezza di pioggia caduta in un periodo pari al tempo di corrivazione;

coefficiente di deflusso, corrispondente alla porzione di acqua di precipitazione che defluisce lungo la sezione esaminata; nel calcolo di tali coefficienti, cautelativamente si considerano eventi di pioggia ravvicinati che determinano un sensibile abbassamento della permeabilità dei terreni.

X

4.2.4 Calcolo delle portate di piena nei bacini di interesse

A seconda delle caratteristiche morfologiche delle sezioni di interesse idraulico (Tab.11) si sono ricavate le portate di piena.

Si è adottata a tale scopo la formula razionale:

 $Q = C \cdot I \cdot A / 360$

dove:

Q = portata in mc/s;

C = coefficiente di deflusso del bacino;

I = intensità di pioggia in mm/h relativa al tempo di corrivazione del bacino e per tempo di ritorno assegnato;

A = area del bacino in ha.

L'espressione è valida per tutti i bacini esaminati e, per le sezioni di interesse, sono riportati nelle Tabb.26 e 27 le portate calcolate con i due metodi.

X

4.2.5 Verifiche idrauliche e valutazione delle aree di allagamento per fissato tempo di ritorno

E'stato predisposto un modello di simulazione degli invasi di piena nel reticolo idrografico che interessa le zone oggetto di studio; sono state esaminate quindi le piene supportate in diverse sezioni di verifica idraulica, per come appresso vengono riportate le sole sezioni di verifica rappresentative di fasce di esondazione omogenee.

4.2.5.1 Scelta delle Sezioni di Verifica idraulica

I sopralluoghi effettuati e l'esame delle carte topografiche disponibili, integrate dalla documentazione fotografica, hanno consentito di individuare, per ciascun corso d'acqua, tratti di canale morfologicamente uniformi nei quali sono state considerate costanti le caratteristiche fisico-geometriche delle sezioni trasversali le quali sono state sottoposte a verifiche idraulica.

In particolare sono state ricostruite nº 15 sezioni relative ai seguenti corsi d'acqua:

Torrente Ciachea:

- sez.1 in corrispondenza della foce, sotto il ponte autostradale;
- sez.1a a monte dell'autostrada;
- sez.1bfra l'autostrada e la ferrovia:
- sez.1csubito a valle del ponte FS
- sez.1dponte FS;
- sez.1eponte SS113;
- sez.1f subito a monte del ponte sulla SS113;
- sez.1gcontrada Luogo Grande;
- sez. 1h ponticello stradale;
- sez. 1icontrada villaggio Sommaria;
- sez. 1lponticello per villaggio Sommaria;
- sez. 1m località Parchiscieddu.

Vallone Areddara:

- sez. 2 all'innesto col T. Ciachea in località Inferura;
- sez. 2 a a monte del villaggio Sommaria.

Tab	. 35		Scal	a di N	loto U	niforme		1					
					T	T	1	+		Cool	f di c	cabrezza	+
		Pend.	canale	В	B1	Н	L1	L2	H1	N1	N2	Tab	1
SEZIOI	NF	1f	0,03	4,00	10,00		_		-		INZ	Tab	
		11	0,03	4,00	10,00	2,00	8,00	8,00	1,00	1,75	2,3	35	
				1			-	+	+			-	
,										+	-	1.	
6,00)												1
5,00								+					
4,00	+		-										
3,00													
2,00	-		-									-	
1,00	/												
0.00	Y												
0,00						4. (9)	the same of the same of	seem 18 had		1			
	0.0	20	00.0	40	0.0	600 O		200.0	40	200.0	4.0	200	
	0,0	20	0,0	40	0,0	600,0	8	300,0	10	0,000	12	200,0	1400,0
	0,0	20	0,0	40	0,0	600,0	8	300,0	10	0,000	12	200,0	1400,0
[m]	A1	C1				600,0 Q1 [mc		300,0 C2	10 R2	000,0 K2			
[m] 0,20	A1 0,9	C1 4,7	R1 0,2	K1			A2						Qtot [mc/s]
[m] 0,20 0,40	A1 0,9 1,9	C1 4,7 5,4	R1	K1	V1[m/s	Q1 [mc	(A2 0	C2				Q2 [mc/	Qtot [mc/s]
[m] 0,20 0,40 0,60	A1 0,9 1,9 3,0	C1 4,7 5,4 6,2	R1 0,2 0,3 0,5	K1	V1[m/:	Q1 [mc.	A2 0	C2 0				Q2 [mc/ 0	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80	A1 0,9 1,9 3,0 4,3	C1 4,7 5,4	R1 0,2 0,3	K1 17 22	V1[m/s	Q1 [mc 1,1 4,1	A2 0 0	C2 0 0				Q2 [mc/ 0 0	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00	A1 0,9 1,9 3,0 4,3 5,6	C1 4,7 5,4 6,2 6,9 7,6	R1 0,2 0,3 0,5	K1 17 22 25	V1[m/s 1,3 2,2 3,0	Q1 [mc 1,1 4,1 9,0	(A2 0 0 0	C2 0				Q2 [mc/ 0 0 0	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00 1,20	A1 0,9 1,9 3,0 4,3 5,6 7,1	C1 4,7 5,4 6,2 6,9 7,6 8,3	R1 0,2 0,3 0,5 0,6	K1 17 22 25 27	V1[m/s 1,3 2,2 3,0 3,7	Q1 [mc 1,1 4,1 9,0 15,6	A2 0 0 0	C2 0 0				Q2 [mc/ 0 0 0 0	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7	C1 4,7 5,4 6,2 6,9 7,6	R1 0,2 0,3 0,5 0,6 0,7	K1 17 22 25 27 29	V1[m/s 1,3 2,2 3,0 3,7 4,3	Q1 [mc 1,1 4,1 9,0 15,6 24,0	A2 0 0 0 0	C2 0 0 0 0 0				Q2 [mc/ 0 0 0 0 0	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8	R1 0,2 0,3 0,5 0,6 0,7 0,9	K1 17 22 25 27 29 30	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2	A2 0 0 0 0 0	C2 0 0 0				Q2 [mc/ 0 0 0 0 0 0	Qtot [mc/s] 1 4 9 15 24 34
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0	K1 17 22 25 27 29 30 31	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4	A2 0 0 0 0 0 0	C2 0 0 0 0 0 0			V2[m	Q2 [mc/ 0 0 0 0 0 0 0	Qtot [mc/s] 1 4 9 15 24 34 46 60
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1	K1 17 22 25 27 29 30 31 32	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8	Q1 [mc 1.1 4,1 9,0 15,6 24,0 34,2 46,4 60,5	A2 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0			V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0	Qtot [mc/s] 4 5 15 24 34 46 60 76
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2	K1 17 22 25 27 29 30 31 32 33	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7	A2 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0	R2	K2	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 24 34 46 60 76
[m] 0,20 0,40 0,60 1,20 1,40 1,60 1,80 2,20 2,40	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3	K1 17 22 25 27 29 30 31 32 33 34	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1	A2 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R2	K2	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95
[m] 0,20 0,40 0,60 1,00 1,40 1,60 1,80 2,00 2,40 2,60	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5	K1 17 22 25 27 29 30 31 32 33 34 35	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4	Q1 [mc. 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20	10,5 14,1	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95 120 149
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6	K1 17 22 25 27 29 30 31 32 33 34 35 37	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30	10,5 14,1 16,7	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,4 4,5	Qtot [mc/s] 24 34 46 60 76 95 120 149
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3 24,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8	K1 17 22 25 27 29 30 31 32 33 34 35 37	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40	10,5 14,1 16,7 18,7	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 1,4 4,5 10,5	Qtot [mc/s] 24 34 46 60 76 95 120 149 183
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 2,00 2,20 2,40 2,60 2,80 3,00 3,20	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50	10,5 14,1 16,7 18,7 20,4	0,6 1,1 1,6 2,0 2,5	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,4 4,5 10,5 19,9	Qtot [mc/s] 24 34 46 60 76 95 120 149 183 221 265
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3 24,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39 40	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5 10,1 10,8	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8 282,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50 0,60	10,5 14,1 16,7 18,7 20,4 21,9	0,6 1,1 1,6 2,0 2,5 2,9	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95 120 149 183 221 265 316
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 2,00 2,40 2,60 2,80 3,00 3,20 3,40 3,60	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3 24,3 26,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2 11,2 11,2 11,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,3	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39 40 41	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5 10,1 10,8 11,4	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8 282,7 321,8	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50 0,60 0,69	10,5 14,1 16,7 18,7 20,4 21,9 23,1	0,6 1,1 1,6 2,0 2,5 2,9 3,3	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 24 34 46 60 76 95 120 149 183 221 265 316 374
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3 24,3 26,3 28,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,3 2,5	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39 40 41 41	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5 10,1 10,8 11,4 12,0	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8 282,7 321,8 363,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50 0,60 0,69 0,79	10,5 14,1 16,7 18,7 20,4 21,9 23,1 24,3	0,6 1,1 1,6 2,0 2,5 2,9 3,3 3,7	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95 120 149 183 221 265 316 374 439
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 2,00 2,40 2,60 2,80 3,00 3,20 3,40 3,60	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3 24,3 26,3 28,3 30,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39 40 41 41 41 42 43	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5 10,1 10,8 11,4 12,0 12,6	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8 282,7 321,8 363,0 406,1	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50 0,60 0,69 0,79 0,89	10,5 14,1 16,7 18,7 20,4 21,9 23,1 24,3 25,3	0,6 1,1 1,6 2,0 2,5 2,9 3,3 3,7 4,1	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95 120 149 183 221 265 316 374 439 513
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 20,3 22,3 24,3 26,3 28,3 30,3 32,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,1	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39 40 41 41 42 43 43	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5 10,1 10,8 11,4 12,0 12,6 13,2	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8 282,7 321,8 363,0 406,1 451,2	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50 0,60 0,69 0,79 0,89 0,99	10,5 14,1 16,7 18,7 20,4 21,9 23,1 24,3 25,3 26,3	0,6 1,1 1,6 2,0 2,5 2,9 3,3 3,7 4,1 4,5	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95 120 149 183 221 265 316 374 439 513
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 3,00 3,20 3,40 3,60 3,80 4,00	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3 24,3 26,3 28,3 30,3 32,3 34,3 36,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,1 3,2	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39 40 41 41 42 43 43 43	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5 10,1 10,8 11,4 12,0 12,6 13,2 13,7	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8 282,7 321,8 363,0 406,1 451,2 498,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50 0,60 0,69 0,79 0,89 0,99 1,09	10,5 14,1 16,7 18,7 20,4 21,9 23,1 24,3 25,3 26,3 27,2	0,6 1,1 1,6 2,0 2,5 2,9 3,3 3,7 4,1 4,5 4,9	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95 120 149 183 221 265 316 374 439 513 596 688
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 2,00 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 20,3 22,3 24,3 26,3 28,3 30,3 32,3 34,3 36,3 38,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,1 3,2 3,4	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39 40 41 41 42 43 43 44 45	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5 10,1 10,8 11,4 12,0 12,6 13,2 13,7 14,3	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8 282,7 321,8 363,0 406,1 451,2 498,3 547,2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50 0,60 0,69 0,79 0,89 0,99 1,09 1,19	10,5 14,1 16,7 18,7 20,4 21,9 23,1 24,3 25,3 26,3 27,2 28,0	0,6 1,1 1,6 2,0 2,5 2,9 3,3 3,7 4,1 4,5 4,9 5,3	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95 120 149 183 221 265 316 374 439 513 596 688 791
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 2,00 2,20 2,40 2,60 3,20 3,40 3,60 3,80 4,00 4,20	A1 0,9 1,9 3,0 4,3 5,6 7,1 8,7 10,5 12,3 14,3 16,3 18,3 20,3 22,3 24,3 26,3 28,3 30,3 32,3 34,3 36,3	C1 4,7 5,4 6,2 6,9 7,6 8,3 9,0 9,8 10,5 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,1 3,2	K1 17 22 25 27 29 30 31 32 33 34 35 37 38 39 40 41 41 42 43 43 43	V1[m/s 1,3 2,2 3,0 3,7 4,3 4,8 5,3 5,8 6,2 6,7 7,4 8,1 8,8 9,5 10,1 10,8 11,4 12,0 12,6 13,2 13,7	Q1 [mc 1,1 4,1 9,0 15,6 24,0 34,2 46,4 60,5 76,7 95,1 120,4 148,2 178,5 211,0 245,8 282,7 321,8 363,0 406,1 451,2 498,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,30 0,40 0,50 0,60 0,69 0,79 0,89 0,99 1,09	10,5 14,1 16,7 18,7 20,4 21,9 23,1 24,3 25,3 26,3 27,2	0,6 1,1 1,6 2,0 2,5 2,9 3,3 3,7 4,1 4,5 4,9	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 15 24 34 46 60 76 95

X

Vallone Susinna:

sez. 3 all'innesto col T. Ciachea in località Parchiscieddu;

La posizione planimetrica delle sezioni in esame è riportate in TAV. A4 e nelle TAVV.B1.1/5

La rappresentazione di tali sezioni è stata opportunamente estesa al piano di camp'agna laterale in funzione della portata defluente, onde ricavarne le fasce di esondazione.

TAB. 26			CALCOL	D PORTAT	E DI PIEN	CALCOLO PORTATE DI PIENA NELLE SEZIONI DI INTERESSE	EZIONI DI	INTERESS	3E		GUMBEL
					Tempo di ritorno	Tr = 20	20	100	200	300	200
	10 800.00	Sez. di	Bacino	Tempo di	_	51	09	29	74	78	83
Località	Torrente	Interesse	sotteso	Corrivazion	u	-0,727	-0,735	-0,739	-0,742	-0,744	-0,746
		n°	[kmd]	[h]	Coeff. Deflusso	2'0	2'0	8,0	8'0	0,85	0,85
-				,		Portate di	Portate di piena Q[mc/s] per dato Tempo di Ritorno	c/s] per da	ito Tempo	di Ritorno	
Autostrda- foce	Ciachea	-	30	2,3		161	188	239	263	294	312
A monte dell'autostrada	=	12									
Fra l'autostrada e le FS	=	1b							-		
a valle del ponte FS	Ciachea	10	29	2,3		159	186	237	261	291	310
Ponte FS	2	10									
Ponte sulla SS113	=	1e									
A monte della SS113		11									
C.da Luogo Grande	=	19									
" Ponticello stradale	=	1h			14 (81.0)					-	
Villaggio Sommariva	Ciachea	1	26	2,1		149	174	221	244	272	289
Ponticello stradale	=	=									
Parchiscieddu	Ciachea	1m	20	1,9		123	144	184	202	226	240
Inferura	V.ne Areddara	2	2	0,4		42	90	64	71	80	85
Ponticello stradale	п	2a							1		
Parchisceddu	V.ne Susinna	3	5	8,0		09	71	06	100	112	119

TAB. 27			CALCOL	D PORTAT	E DI PIEN	CALCOLO PORTATE DI PIENA NELLE SEZIONI DI INTERESSE	EZIONI DI	INTERESS	JE JE	2 COMPONENTI	ZENTI
					Tempo di ritorno	Tr = 20	20	100	200	300	200
	ļ	Sez. di	Bacino	Tempo di	a	44	54	61	68	72	.78
Localita	Torrente	Interesse	sotteso	e TC	n	-0,667	-0,667	999'0-	999'0-	999'0-	-0,665
		°u	[kmd]	Ξ	Coeff. Deflusso	0,7	2'0	8,0	8'0	0,85	0,85
						Portate di	Portate di piena Q[mc/s] per dato Tempo di Ritorno	c/s] per da	to Tempo	di Ritorne	
Autostrda- foce	Ciachea	-	30	2,3		146	177	230	258	291	312
A monte dell'autostrada	=	1a									
Fra l'autostrada e le FS	=	1b									
a valle del ponte FS	Ciachea	10	29	2,3		144	176	228	255	288	300
Ponte FS	=	1d									
Ponte sulla SS113	=	1e									
A monte della SS113		14									
C.da Luogo Grande	-	19							-		
" Ponticello stradale	1	1h								-	
Villaggio Sommariva	Ciachea		26	2.1		134	163	212	237	288	787
Ponticello stradale	=	=									
Parchiscieddu	Ciachea	1m	20	1,9		111	135	175	195	221	237
Inferura	V.ne Areddara	2	2	0,4		34	42	54	61	89	73
Ponticello stradale		2a									
Parchisceddu	V.ne Susinna	3	2	8,0		51	62	80	06	102	109
								The state of the s			200

- B1 larghezza in sommità dell'alveo [m]
- H altezza alveo [m]
- L1 larghezza piano golenale sx [m]
- L2 larghezza piano golenale dx [m]
- H1 altezza max piani golenali [m]

n.b. nei piani golenali menzionati, si ricercano le fasce interessate dalle esondazioni;

Q_T Portata di piena prevista per T=50, 200, 500 [mc/s]

Qmax Portata massima convogliata nel canale o passante dai ponticelli [mc/s]

Nelle tabb.29-43 si riportano le corrispondenti scale di moto uniforme delle sezioni di verifica idraulica.

Valutazione delle aree di allagamento per fissato tempo di ritorno

Per le tre portate (Q_T) definite con i tempi di ritorno 500, 200 e 50 anni si sono determinate le altezze di moto uniforme riferite al fondo dell'alveo (indicate con "h") e nei casi di esondazione le altezze riferite alle sommità dell'alveo (indicate con "h+") nonché le larghezze di terreno complessive interessate dalle esondazioni nei piani cosiddetti golenali.

Tali larghezze di esondazione, distinte secondo che in sinistra o in destra del canale, sono riportate nella Tab.44, la quale è stata la base per il successivo tracciamento planimetrico (TAV. A4 e TAVV.B1.1/5) delle zone di esondazione al verificarsi degli eventi di piena di fissato livello di rischio accettato.

E' opportuno sottolineare che lo studio, sviluppato con le ipotesi di portata per tempi di ritorno 20-50, 100-200 e 400-500 anni, ha fornito differenze fra i relativi battenti idraulici talvolta modesti, e in ogni caso di grandezza tale da non determinare, per la scala della cartografia utilizzata, variazioni apprezzabili nella estensione delle rispettive aree esondabili.

Inoltre, le superfici interessate da esondazione sono di limitata ampiezza e, quindi, non adeguatamente rappresentabili. Pertanto, le zone soggette a esondazione sono rappresentate da una linea marcata che corre in corrispondenza della traccia dell'alveo, a significare che l'ampiezza del fenomeno è in quel tratto al di sotto del limite di rappresentazione consentito dalla scala utilizzata.

Si rende, quindi, indispensabile per una corretta interpretazione degli elaborati prodotti la lettura delle carte unitamente alle indicazioni contenute nella presente relazione e nelle tabelle a corredo della stessa, che vanno a tutti gli effetti considerate come completamento della cartografia prodotta.

TAB. 28		Rilievo	caratte	istiche	geomet	riche ed	idraulic	Rilievo caratteristiche geometriche ed idrauliche delle Sezioni di interesse	sezioni	di inte	l o	di verifica	ica			
														+	+	T
/									/					+		
/		SEZ.	n°									-		+		
h1			B1	-												
		1		+												
				\												
h				\					-							
	L	_	В	_		12								<u> </u>		
		_												-		
Località	Torrente	dnota	Sez. nº	Pend I	В	B1	ч	L1	17	h1	Coeff, Scabr.	Г	Tab.	a	QT=	
	- 1	f.alveo									Ξ	NZ		20	200	500
Autostrda- foce	Ciachea	2	1	0,02	15,00	16,00	2,50	10,00	10,00	1,00	1,3	2,3	29 17	177 2	258	312
A monte dell'autostrada"	=	2	19	0,02	9,00	13,00	2,00	10,00	10,00	1,00	1,75	2,3	30	=	-	=
Fra l'autostrada e le FS "	= (0	20	1b	0,02	7,00	12,00	2,00	10,00	10,00	1,00	1,75	2,3	31	=	=	=
a valle del ponte FS	Ciachea	27	10	0,03	5,00	00'6	2,50	10,00	10,00	2,00	1,75	2,3	32 17	176 2	255 3	309
Ponte FS	=	30	1d	0,03	2,00	5,00	2,80	4,00	4,00	2,00	0,75	2,3	33	=	=	=
Ponte sulla SS113	=	33	1e	0,03	8,00	00'6	2,00	4,00	4,00	2,00	0,75	2,3	34	=	=	=
A monte della SS113		42	11	0,03	4,00	10,00	2,00	8,00	8,00	1,00	1,75	2,3	35	_ ·	=	=
C.da Luogo Grande	=	48	1g	90'0	4,00	12,00	4,00	8,00	8,00	1,00	1,75	2,3	36	=	=	=
" Ponticello stradale		20	4	0,05	5,00	2,00	1,80	00'9	00'9	3,00	1,3	2,30	37	=	=	=
Villaggio Sommariva	Ciachea	70	ij	0,07	6,00	10,00	4,00	00'9	00'9	1,50	1,75	2,3	38 163	\vdash	237 2	287
Ponticello stradale	=	72	=	70,0	10,00	10,00	3,00	00'9	00'9	2,00	1,3	2,3		-	-	=
Parchiscieddu	Ciachea	85	Jm	20'0	2,00	20,00	4,00	00'9	00'9	2,00	1,75	2,3	40 135	-	195 2	237
Inferura	V.ne Areddara	70	2	80'0	2,00	3,00	1,80	7,00	00'2	1,50	1,75	2,3	41 42	-	61	73
Ponticello stradale	=	130	2a	60'0	8,00	20,00	0,10	10,00	10,00	1,00	0,75	2,3	42 "		=	=
Parchisceddu	V.ne Susinna	84	က	80'0	3,00	00'9	3,00	7,00	7,00	1,50	1,75	2,3	43 62	\vdash	90 1	109

4.2.6 Analisi dei risultati

Il procedimento di tracciamento delle zone di esondazione per fissato tempo di ritorno, esposto nel paragrafo precedente, ha permesso la realizzazione di una planimetria della zona di interesse in scala 1:10.000 (TAV.A4 e TAVV.B1.1/5) ove sono evidenziate le esondazioni.

Procedendo da Nord verso Sud per l'analisi delle zone di esondazione dei bacini in studio e seguendo la numerazione progressiva utilizzata nella suddetta tavola si esaminano di seguito i risultati ottenuti per il Torrente Ciachea ed i suoi tributari.

Il Torrente ha un bacino di dominio di circa 30 Kmq alla foce, le aste principali di maggior apporto idrico nella zona oggetto di studio sono: il vallone Areddara con 2 Kmq a quota 70 m.s.m ed il V.ne Susinna con 5 circa Kmq a quota 84 m s.m..

Lungo l'asta del Torrente Ciachea, le portate di piena sono variabili da 177 a 312 mc/s circa, rispettivamente per T=50 e T=500 anni alla sezione di interesse n° 1 e rimangono pressoché tali fino all'innesto del Vallone Areddara dove subito a monte risultano rispettivamente pari a 163 e 287 mc/s circa; mentre a monte dell'innesto col Vallone Susinna le portate si riducono a circa 135 e 237 mc/s.

Pertanto nella zona oggetto di studio, i valori delle portate dell'unico Torrente di rilievo, risultano pressoché uniformi.

Nelle suddette zone, l'alveo presenta una sezione trapezia abbastanza regolare ed incisa, ed alcuni manufatti sono costruiti oltre i piani golenali del canale. Nella Tab. 44 si evidenziano battenti max di esondazioni compresi fra m 0,2 e 0,7 circa interessando fasce a cavallo dell'alveo di modesta larghezza, inferiori a 10 m; in alcuni ponticelli il battente segnato rappresenta il rigurgito per incapacità idraulica ma che comunque subito a monte risulta contenuto in alveo.

Entrando più in particolare e procedendo dalla foce del Torrente Ciachea verso monte, si evidenzia quanto appresso.

Sotto il ponte autostradale la sezione è abbastanza ampia ed a monte di esso pur restringendo la sezione, la portata risulta contenuta (anche se in sez. 1a risulta evidenziato un piccolo battente di esondazione) fino al punto di ulteriore restringimento rappresentato nella sezione n° 1b; si hanno a monte di tale sezione

- L1									מי יפוויסמ ומוממוויסמ							
L1	SEZ.		n°							\setminus						
L1			18													
L1	1			1												
L1									+	-						
L1									+							
	-	-	- B	_		12			-	-						
			H						-	-		-				
Torrente	Esond. N° qu	-	Sez n°	. Pend	hm	hmax per	<u>=</u>		per T=		nax S	Largh. max Sx per T=	Largh.	Largh. max Dx per T	er T	Tab.
		f.alveo	-		90	200	500	50 2	200 500		50 200	009 00	_	200	200	'n.
Ciachea		2	-	0,02	1,8	2,1	2,4	0	0	00'0	00'0	00'0	00'0	0	00,0	29
=	-	5	1a	0,02	2,2	2,7	2,9	0,20	06'0 02'0			-	2,00	2,00	00'6	30
=		20	1b	0,02	2,4	2,8	3,1	0,40	0,80 1,10	0 4,00		11,00	4,00	8,00	11,00	31
Ciachea		27	10	0,03	2,8	3,2	4,2	0,30	0,70 1,70	1,50	3,50	8,50	1,50	3,50	8,50	32
=		30	1d	0,03	2,8	3,8	4,2	0	1,00 1,40	00'0 01		2,80	00'0	2,00	2,80	33
		33	1e	0,03	1,9	2,4	2,6	0	0,40 0,60	00'0		-	00'0	0,80	1,20	34
	2	42	1£	0,03	2,4	2,9	3,2	0,40	0,90 1,20	3,20	7,20	9,60	3,20	7,20	09'6	35
=		48	1g	0,05	2,6	3,1	3,3	0	0	00'0		-	00'0	00'0	00'0	36
=		20	1h	0,05	2,6	3,3	3,6	0,80	,50 1,80	1,60	3,00	3,60	1,60	3,00	3,60	37
Ciachea		70	=	0,07	2,1	2,6	2,9	0	0 0	00'0	00'0	00'0	00'0	00'0	00'0	38
=	3	72	=	0,07	1,5	1,9	2,1	0	0 0	00'0	00'0	00'0	00'0	00'0	00'0	39
Ciachea		85	1m	0,07	1,7	2,1	2,3	0	0 0	00'0	00'0	-	00'0	00'0	00'0	40
V.ne Areddara		70	2	80'0	2,0	2,4	2,5	0,20	0,60 0,70	0,93	2,80	3,27	0,93	2,80	3,27	41
Strada a monte del villaggio sommariva		130	2a	60'0	9'0	0,5	9'0	0,35 0	0,40 0,45	5 3,50	4,00	4,50	3,50	4,00	4,50	42
V.ne Susinna		84	3	0,08	1,8	2,2	2,4	0	0	H		\vdash	00'0	00'0	00,00	43

T	ab.	29		Scal	a di M	oto Ur	niforme							
													abrezza	
			Pend.d	_	В	B1	Н	L1	L2	H1	N1	N2	Tab	
SEZ	ION	E	1	0,02	15,00	16,00	2,50	10,00	10,00	1,00	1,3	2,3	29	
				1									,	
													· · · · · · · · · · · · · · · · · · ·	
6	,00	T			T		T			T				
					•									
5	,00	-					-			-				
4	,00						-							
3	,00													
	,00													
	00	1		/										
2,	,00								***************************************			-	-	
1,	,00 -	1						-		-				
													I.	
0,	,00 -						1							
	0	,0	200	0.0	400,0) 60	0,0	300,0	100	0,0	1200	10 1	400,0	1600,0
		, .		., -	,.	, ,	,0,0 (300,0	100	,0,0	1200	,0 1	400,0	1000,0
	T													
	\neg													
h [m]	A	41											1	
		7.1	C1	R1	K1	V1[m/s	Q1 [mc	A2	C2	R2	K2	V2ſm	Q2 [mc	Otot [mc/s]
^	20	3,0	C1 15,4	R1 0,2	K1 22	V1[m/s	Q1 [mc/ 4,1		C2 0	R2	K2	V2[m	Q2 [mc/	Qtot [mc/s]
	40	3,0 6,0	15,4 15,8					0		R2	K2	V2[m		4,1
0,	40	3,0 6,0 9,1	15,4 15,8 16,2	0,2 0,4 0,6	22, 28 32	1,4 2,4 3,4	4,1 14,8 30,5	0 0 0	0	R2	K2	V2[m	0	4,1 14,8
0, 0,	40 60 80	3,0 6,0 9,1 12,1	15,4 15,8 16,2 16,6	0,2 0,4 0,6 0,7	22, 28 32 35	1,4 2,4 3,4 4,2	4,1 14,8 30,5 50,6	0 0 0 0	0	R2	K2	V2[m	0	4,1
0, 0, 1,	40 60 80 00	3,0 6,0 9,1 12,1 15,2	15,4 15,8 16,2 16,6 17,0	0,2 0,4 0,6 0,7 0,9	22, 28 32 35 37	1,4 2,4 3,4 4,2 4,9	4,1 14,8 30,5 50,6 74,5	0 0 0 0	0 0 0 0	R2	K2	V2[m	0 0 0 0	4,1 14,8 30,5 50,6 74,5
0, 0, 1,	40 60 80 00 20	3,0 6,0 9,1 12,1 15,2 18,3	15,4 15,8 16,2 16,6 17,0 17,4	0,2 0,4 0,6 0,7 0,9 1,0	22, 28 32 35 37 38	1,4 2,4 3,4 4,2 4,9 5,6	4,1 14,8 30,5 50,6 74,5 101,7	0 0 0 0 0	0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7
0, 0, 1, 1,	40 60 80 00 20 40	3,0 6,0 9,1 12,1 15,2 18,3 21,4	15,4 15,8 16,2 16,6 17,0 17,4 17,9	0,2 0,4 0,6 0,7 0,9 1,0	22. 28 32 35 37 38 40	1,4 2,4 3,4 4,2 4,9 5,6 6,2	4,1 14,8 30,5 50,6 74,5 101,7 131,9	0 0 0 0 0 0	0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9
0, 0, 1, 1,	40 60 80 00 20 40	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3	0,2 0,4 0,6 0,7 0,9 1,0 1,2	22, 28 32 35 37 38 40 41	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0
0, 0, 1, 1, 1,	40 60 80 00 20 40	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5	22. 28 32 35 37 38 40 41 42	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5	0 0 0 0 0 0 0	0 0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5
0, 0, 1, 1, 1, 1,	40 60 80 00 20 40 60 80	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3	0,2 0,4 0,6 0,7 0,9 1,0 1,2	22, 28 32 35 37 38 40 41	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5
0, 0, 1, 1, 1, 1, 2, 2,	,40 ,60 ,80 ,00 ,20 ,40 ,60 ,80 ,00 ,20 ,40 ,40 ,40	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5	22, 28 32 35 37 38 40 41 42 43	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6
0, 0, 1, 1, 1, 1, 2, 2, 2,	40 80 80 20 40 60 80 00 20 40 60	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6	22, 28 32 35 37 38 40 41 42 43	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7 8,2	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	R2			0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2,	40 60 80 00 20 40 60 80 00 20 40 60 80 80	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0	22, 28 32 35 37 38 40 41 42 43 44 45 45	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7 8,2 8,6	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0		7,7 12,5	0,2 0,7	0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3,	40 60 80 00 20 40 60 80 00 20 40 60 80 00 00 00 00 00 00 00 00 0	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3	22, 28, 32, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47,	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7 8,2 8,6 9,1 9,6 10,1	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05	7,7	0,2	0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,	40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 20 20 20 20 20 20 20 2	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5	22 28 32 35 37 38 40 41 42 43 44 45 45 46 47 48	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7 8,2 8,6 9,1 9,6 10,1 10,6	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4 531,8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35	7,7	0,2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3,	40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 40 40 40 40 40 40 40 40 4	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0 53,2	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5 2,6	22 28 32 35 37 38 40 41 42 43 44 45 46 47 48 48	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7 8,2 8,6 9,1 9,6 10,1 10,6 11,1	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 278,6 320,8 367,6 419,6 474,4 531,8 591,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35 0,45	7,7 12,5 15,5 17,8 19,6	0,2 0,7 1,1 1,5 1,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1 606,9
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3,	40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 60 60 80 00 20 40 60 60 60 60 60 60 60 60 60 6	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0 53,2 56,4	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5 2,6 2,8	22, 28, 32, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 49,	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7 8,2 8,6 9,1 9,6 10,1 10,6 11,1 11,6	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4 531,8 591,9 654,4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35 0,45 0,55	7,7 12,5 15,5 17,8 19,6 21,2	0,2 0,7 1,1 1,5 1,9 2,2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1 606,9 681,2
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,	40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 60 80 60 80 60 80 80 80 80 80 80 80 80 80 8	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0 53,2 56,4 59,6	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1 20,1 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5 2,6 2,8 3,0	22, 28, 32, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 49, 50,	1,4 2,4 3,4 4,2 4,9 5,6 6,2 7,7 8,2 8,6 9,1 9,6 10,1 10,6 11,1 11,6 12,1	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4 531,8 591,9 654,4 719,5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35 0,45 0,55 0,65	7,7 12,5 15,5 17,8 19,6 21,2 22,5	0,2 0,7 1,1 1,5 1,9 2,2 2,6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1 606,9 681,2 762,8
0, 0, 1, 1, 1, 1, 2, 2,; 2,; 2,; 3,; 3,; 3,; 3,; 4,	40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 60 80 00 60 80 00 60 80 60 60 80 60 60 60 60 60 60 60 60 60 6	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0 53,2 56,4 59,6 62,8	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1 20,1 20,1 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5 2,6 2,8 3,0 3,1	22 28 32 35 37 38 40 41 42 43 44 45 46 47 48 48 49 50 50	1,4 2,4 3,4 4,2 4,9 5,6 6,2 7,7 8,2 8,6 9,1 9,6 10,1 10,6 11,1 11,6 12,1 12,5	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4 531,8 591,9 654,4 719,5 786,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75	7,7 12,5 15,5 17,8 19,6 21,2 22,5 23,8	0,2 0,7 1,1 1,5 1,9 2,2 2,6 2,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1 606,9 681,2 762,8 852,2
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,	40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 20 40 60 80 60 80 60 80 60 60 80 60 60 80 60 60 60 80 60 60 60 60 60 60 60 60 60 6	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0 53,2 56,4 59,6 62,8 66,0	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1 20,1 20,1 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5 2,6 2,8 3,0 3,1 3,3	22 28 32 35 37 38 40 41 42 43 44 45 46 47 48 48 49 50 51	1,4 2,4 3,4 4,2 4,9 5,6 6,2 7,7 8,2 8,6 9,1 9,6 10,1 10,6 11,1 11,6 12,1 12,5 13,0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4 531,8 591,9 654,4 719,5 786,9 856,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35 0,45 0,65 0,75 0,85	7,7 12,5 15,5 17,8 19,6 21,2 22,5 23,8 24,9	0,2 0,7 1,1 1,5 1,9 2,2 2,6 2,9 3,2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1 606,9 681,2 762,8 852,2 950,1
0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4,	40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 60 80 00 40 60 80 60 60 80 60 60 60 60 60 60 60 60 60 6	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0 53,2 56,4 59,6 62,8 66,0 69,2	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1 20,1 20,1 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5 2,6 2,8 3,0 3,1 3,3 3,4	22 28 32 35 37 38 40 41 42 43 44 45 46 47 48 48 49 50 51 51	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7 8,2 8,6 9,1 10,6 11,1 11,6 12,1 12,5 13,0 13,4	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4 531,8 591,9 654,4 719,5 786,9 856,7 928,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95	7,7 12,5 15,5 17,8 19,6 21,2 22,5 23,8 24,9 25,8	0,2 0,7 1,1 1,5 1,9 2,2 2,6 2,9 3,2 3,6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1 606,9 681,2 762,8 852,2 950,1 1057,2
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,	40 60 80 00 20 40 60 80 00 20 40 60 88 00 20 40 60 88 00 20 40 60 60 80 60 60 60 60 60 60 60 60 60 6	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0 53,2 56,4 59,6 62,8 66,0 69,2 72,4	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1 20,1 20,1 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5 2,6 2,8 3,0 3,1 3,3 3,4 3,6	22 28 32 35 37 38 40 41 42 43 44 45 46 47 48 48 49 50 51 51 52	1,4 2,4 3,4 4,2 4,9 5,6 6,2 7,7 8,2 8,6 9,1 9,6 10,1 10,6 11,1 11,6 12,1 12,5 13,0 13,4 13,9	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4 531,8 591,9 654,4 719,5 786,9 856,7 928,9 1003,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95 1,04	7,7 12,5 15,5 17,8 19,6 21,2 22,5 23,8 24,9 25,8 26,8	0,2 0,7 1,1 1,5 1,9 2,2 2,6 2,9 3,2 3,6 3,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1 606,9 681,2 762,8 852,2 950,1 1057,2 1173,9
0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 6	40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 60 80 00 20 40 60 80 60 80 60 80 60 60 80 60 60 60 60 60 60 60 60 60 6	3,0 6,0 9,1 12,1 15,2 18,3 21,4 24,5 27,7 30,8 34,0 37,2 40,4 43,6 46,8 50,0 53,2 56,4 59,6 62,8 66,0 69,2	15,4 15,8 16,2 16,6 17,0 17,4 17,9 18,3 18,7 19,1 19,5 19,9 20,1 20,1 20,1 20,1 20,1 20,1 20,1 20,1	0,2 0,4 0,6 0,7 0,9 1,0 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,2 2,3 2,5 2,6 2,8 3,0 3,1 3,3 3,4	22 28 32 35 37 38 40 41 42 43 44 45 46 47 48 48 49 50 51 51	1,4 2,4 3,4 4,2 4,9 5,6 6,2 6,7 7,2 7,7 8,2 8,6 9,1 10,6 11,1 11,6 12,1 12,5 13,0 13,4	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 419,6 474,4 531,8 591,9 654,4 719,5 786,9 856,7 928,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95	7,7 12,5 15,5 17,8 19,6 21,2 22,5 23,8 24,9 25,8	0,2 0,7 1,1 1,5 1,9 2,2 2,6 2,9 3,2 3,6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,1 14,8 30,5 50,6 74,5 101,7 131,9 165,0 200,5 238,5 278,6 320,8 367,6 420,2 477,1 539,1 606,9 681,2 762,8 852,2 950,1 1057,2

H

		т—	T				T		T				
Tab.	30		Scal	a di N	loto Ui	niforme							
												abrezza	
		Pend.d	canale	В	B1	Н	L1	L2	H1	N1	N2	Tab	
SEZION	VE.	1a	0,02	9,00	13,00	2,00	10,00	10,00	1,00	1,75	2,3	30	
												 	
											1	 	
	,												
												-	
6,00													
-													
5,00							3		"				
3,00													
4,00	+		+		1			-		-			
3,00	1		-										
			/										
2.00	-												
2,00		/						1		_			
	1					-		-					
1,00	+/-		-		-			-		_		-	
	/												
0,00													
	0,0	20	0,0	40	0,0	600.0	0	00.0	4.0	200.0	40	00.0	11000
	0,0	20	0,0	40	0,0	600,0	ð	00,0	10	0,000	12	00,0	1400,0
h [m]	A1	C1	R1	K1	\/1[m/	01 [ma	Λ2	00	D0	1/0	1/05	001	
0,20	1,8		0,2	17	1,1	Q1 [mc.			R2	K2	V2[m		Qtot [mc/s]
0,40	3,8		0,4	23	1,9	7,3		0				0	2,0
0,60	5,8	10,7	0,5	26	2,7	15,6		0				0	7,3
0,80	7,9	11,3	0,7	28	3,3	26,3		0				0	15,6 26,3
1,00	10,1	11,8	0,9	30	3,9	39,5	-	0				0	39,5
1,20	12,3	12,4	1,0	32	4,5	55,0		0				0	55,0
1,40	14,7	13,0	1,1	33	5,0	72,7		0				0	72,7
1,60	17,1	13,5	1,3	34	5,4	92,5		0				0	92,5
1,80	19,6	14,1	1,4	35	5,8	114,5		0				0	114,5
2,00	22,2	14,7	1,5	36	6,2	138,6		0				0	138,6
2,20	24,8	14,7	1,7	37	6,8	169,0	0,4	4,0	0,10	10,5	0,5	0,2	169,2
2,40	27,4	14,7	1,9	38	7,4	201,9	1,6	8,0	0,20	14,1	0,9	1,4	203,3
2,60	30,0	14,7	2,0	39	7,9	237,2	3,6	12,1	0,30	16,7	1,3	4,6	241,9
2,80	32,6	14,7	2,2	40	8,4	274,9	6,4	16,1	0,40	18,7	1,7	10,7	285,6
3,00	35,2	14,7	2,4	41	9,0	314,9	10,0	20,1	0,50	20,4	2,0	20,4	335,3
3,20 3,40	37,8	14,7	2,6	42	9,5	357,1	14,4	24,1	0,60	21,9	2,4	34,4	391,5
3,60	40,4	14,7	2,8	42	9,9	401,4	19,6	28,1	0,70	23,2	2,7	53,6	455,0
3,80	45,6	14,7	2,9	43	10,4	447,9	25,6	32,2	0,80	24,3	3,1	78,5	526,4
4,00	48,2	14,7	3,1	44	10,9	496,4	32,4	36,2	0,90	25,4	3,4	110,0	606,3
4,20	50,8	14,7	3,3 3,5	45	11,4	546,9	40,0	40,2	1,00	26,3	3,7	148,5	695,4
4,40	53,4	14,7	3,6	45	11,8 12,2	599,4 653,8	48,4	44,2	1,09	27,2	4,0	194,8	794,2
4,60	56,0	14,7	3,8	46	12,7	710,2	57,6 67,6	48,2	1,19	28,0	4,3	249,4	903,2
4,80	58,6	14,7	4,0	46	13,1	768,3	78,4	52,3 56,3	1,29	28,8	4,6	313,0	1023,1
5,00	61,2	14,7	4,2	47	13,5	828,4	90,0	60,3	1,39	29,5	4,9	386,1	1154,4
-,	1	,,	1,4	-11	10,0	020,4	30,0	00,0	1,49	30,2	5,2	469,3	1297,7

#

1

	Tab.	31		Scal	a di N	loto Ui	niforme	1		T		1		
											Coef	f di so	abrezza	
			Pend.d	anale	В	B1	Н	L1	L2	H1	N1	N2	Tab	
S	EZION	1E	1b	0,02	7,00	12,00	2,00	10,00	10,00	1,00	1,75	2,3	31	
										1	1			
						,						1		,
\vdash														
\vdash	6,00	Т												
														,
	5,00													
	4,00													
	4,00										1		+	
	3,00	+				-		2.1		- x*:				
							1							
\vdash	2,00	-	/											
	**	1												
\vdash	1,00	/												
	1,00	/							+		+		-	
		1												
	0,00	-		+							-		-	
	(0,0	20	0,0	40	0,0	600,0	8	300,0	10	0,000	12	00,0	1400,0
						1024 4 1200		70. 1	4,000		,,,,	12	00,-	, ,
h [m]		A1	C1	R1	K1	V1[m/s	Q1 [mc	A2	C2	R2	K2	V2ſm	Q2 [mc/	Qtot [mc/s]
	0,20	1,5	7,6	0,2	17	1,1	1,5	_	0				0	1,5
	0,40	3,0	8,3	0,4	22	1,9	5,8	0	0				0	1,5 5,8
	0,60	4,7	8,9	0,5	26	2,6	12,3		0				0	12,3
	0,80 1,00	6,5	9,6	0,7	28	3,2	21,0		_				0	24.0
	1,20	8,4	10,2	0,8	30	3,8	31,7		0					21,0
	1,40	10,3 12,4	10,8	1,0	31	12			0				0	31,7
	1,60	14,6	0,11			4,3	44,4	0.	0				0	31,7 44,4
	1,80		12 1		32	4,8	44,4 59,1	0. 0	0 0				0	31,7 44,4 59,1
	1,001		12,1 12.8	1,2	34	4,8 5,2	44,4 59,1 75,7	0. 0 0	0 0 0 0				0 0 0	31,7 44,4 59,1 75,7
		16,9	12,8	1,2 1,3	34 34	4,8 5,2 5,6	44,4 59,1 75,7 94,4	0. 0 0	0 0 0 0 0				0 0 0 0	31,7 44,4 59,1 75,7 94,4
	2,00 2,20			1,2 1,3 1,4	34 34 35	4,8 5,2 5,6 6,0	44,4 59,1 75,7 94,4 115,1	0 0 0 0	0 0 0 0 0	0.10	10.5		0 0 0 0	31,7 44,4 59,1 75,7 94,4 115,1
	2,00 2,20 2,40	16,9 19,2	12,8 13,4	1,2 1,3 1,4 1,6	34 34 35 37	4,8 5,2 5,6 6,0 6,6	44,4 59,1 75,7 94,4 115,1 142,1	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 4,0	0,10	10,5	0,5	0 0 0 0 0 0 0	31,7 44,4 59,1 75,7 94,4 115,1 142,3
	2,00 2,20 2,40 2,60	16,9 19,2 21,6	12,8 13,4 13,4	1,2 1,3 1,4	34 34 35	4,8 5,2 5,6 6,0 6,6 7,1	44,4 59,1 75,7 94,4 115,1 142,1 171,5	0 0 0 0 0 0 0 0,4 1,6	0 0 0 0 0 0 0 4,0 8,0	0,20	14,1	0,5 0,9	0 0 0 0 0 0 0 0 1,4	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0
	2,00 2,20 2,40 2,60 2,80	16,9 19,2 21,6 24,0 26,4 28,8	12,8 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8	34 34 35 37 38	4,8 5,2 5,6 6,0 6,6	44,4 59.1 75,7 94,4 115,1 142,1 171,5 203,2	0 0 0 0 0 0 0,4 1,6 3,6	0 0 0 0 0 0 0 0 4,0 8,0 12,1	0,20 0,30	14,1 16,7	0,5 0,9 1,3	0 0 0 0 0 0 0 0 1,4 4,6	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9
	2,00 2,20 2,40 2,60 2,80 3,00	16,9 19,2 21,6 24,0 26,4 28,8 31,2	12,8 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0	34 34 35 37 38 39	4,8 5,2 5,6 6,0 6,6 7,1 7,7	44,4 59,1 75,7 94,4 115,1 142,1 171,5	0 0 0 0 0 0 0 0,4 1,6	0 0 0 0 0 0 0 4,0 8,0	0,20 0,30 0,40	14,1 16,7 18,7	0,5 0,9 1,3 1,7	0 0 0 0 0 0 0 0 1,4	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8
	2,00 2,20 2,40 2,60 2,80 3,00 3,20	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6	12,8 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5	34 34 35 37 38 39 40	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1	0 0 0 0 0 0 0,4 1,6 3,6 6,4	0 0 0 0 0 0 0 4,0 8,0 12,1 16,1	0,20 0,30	14,1 16,7 18,7 20,4	0,5 0,9 1,3 1,7 2,0	0 0 0 0 0 0 0 0 0 0 1,4 4,6 10,7	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8 293,5
	2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6 36,0	12,8 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5 2,7	34 34 35 37 38 39 40 41	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2 8,7	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1 273,2	0 0 0 0 0 0,4 1,6 3,6 6,4 10,0	0 0 0 0 0 0 0 4,0 8,0 12,1 16,1 20,1	0,20 0,30 0,40 0,50	14,1 16,7 18,7	0,5 0,9 1,3 1,7	0 0 0 0 0 0 0 0,2 1,4 4,6 10,7 20,4	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8
	2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6 36,0 38,4	12,8 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9	34 34 35 37 38 39 40 41 41 42 43	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2 8,7 9,3 9,8 10,2	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1 273,2 311,3 351,5 393,6	0 0 0 0 0 0,4 1,6 3,6 6,4 10,0	0 0 0 0 0 0 0 4,0 8,0 12,1 16,1 20,1 24,1	0,20 0,30 0,40 0,50 0,60	14,1 16,7 18,7 20,4 21,9	0,5 0,9 1,3 1,7 2,0 2,4	0 0 0 0 0 0 0 0,2 1,4 4,6 10,7 20,4 34,4	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8 293,5 345,7
	2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6 36,0 38,4 40,8	12,8 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,0	34 34 35 37 38 39 40 41 41 42 43 43	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2 8,7 9,3 9,8 10,2 10,7	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1 273,2 311,3 351,5 393,6 437,7	0 0 0 0 0 0,4 1,6 3,6 6,4 10,0 14,4 19,6 25,6 32,4	0 0 0 0 0 0 4,0 8,0 12,1 16,1 20,1 24,1 28,1	0,20 0,30 0,40 0,50 0,60 0,70	14,1 16,7 18,7 20,4 21,9 23,2	0,5 0,9 1,3 1,7 2,0 2,4 2,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8 293,5 345,7 405,1 472,2 547,7
	2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6 36,0 38,4 40,8 43,2	12,8 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,0 3,2	34 34 35 37 38 39 40 41 41 42 43 43	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2 8,7 9,3 9,8 10,2 10,7 11,2	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1 273,2 311,3 351,5 393,6 437,7 483,7	0 0 0 0 0 0,4 1,6 3,6 6,4 10,0 14,4 19,6 25,6 32,4 40,0	0 0 0 0 0 0 4,0 8,0 12,1 16,1 20,1 24,1 28,1 32,2 36,2 40,2	0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00	14,1 16,7 18,7 20,4 21,9 23,2 24,3 25,4 26,3	0,5 0,9 1,3 1,7 2,0 2,4 2,7 3,1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8 293,5 345,7 405,1 472,2 547,7 632,2
	2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6 36,0 38,4 40,8 43,2 45,6	12,8 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,0 3,2 3,4	34 34 35 37 38 39 40 41 41 42 43 43 44	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2 8,7 9,3 9,8 10,2 10,7 11,2 11,7	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1 273,2 311,3 351,5 393,6 437,7 483,7 531,5	0 0 0 0 0 0,4 1,6 3,6 6,4 10,0 14,4 19,6 25,6 32,4 40,0 48,4	0 0 0 0 0 0 4,0 8,0 12,1 16,1 20,1 24,1 28,1 32,2 36,2 40,2 44,2	0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00	14,1 16,7 18,7 20,4 21,9 23,2 24,3 25,4 26,3 27,2	0,5 0,9 1,3 1,7 2,0 2,4 2,7 3,1 3,4 3,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8 293,5 345,7 405,1 472,2 547,7 632,2 726,3
	2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6 36,0 38,4 40,8 43,2 45,6 48,0	12,8 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,0 3,2 3,4 3,6	34 34 35 37 38 39 40 41 41 42 43 43 44 45	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2 8,7 9,3 9,8 10,2 10,7 11,2 11,7 12,1	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1 273,2 311,3 351,5 393,6 437,7 483,7 531,5 581,2	0 0 0 0 0 0,4 1,6 3,6 6,4 10,0 14,4 19,6 25,6 32,4 40,0 48,4 57,6	0 0 0 0 0 0 0 4,0 8,0 12,1 16,1 20,1 24,1 28,1 32,2 36,2 40,2 44,2 48,2	0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,09	14,1 16,7 18,7 20,4 21,9 23,2 24,3 25,4 26,3 27,2 28,0	0,5 0,9 1,3 1,7 2,0 2,4 2,7 3,1 3,4 3,7 4,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8 293,5 345,7 405,1 472,2 547,7 632,2 726,3 830,6
	2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40 4,60	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6 36,0 38,4 40,8 43,2 45,6 48,0 50,4	12,8 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,0 3,2 3,4 3,6 3,8	34 34 35 37 38 39 40 41 41 42 43 43 44 45 45	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2 8,7 9,3 9,8 10,2 10,7 11,2 11,7 12,1 12,5	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1 273,2 311,3 351,5 393,6 437,7 483,7 531,5 581,2 632,6	0 0 0 0 0 0,4 1,6 3,6 6,4 10,0 14,4 19,6 25,6 32,4 40,0 48,4 57,6 67,6	0 0 0 0 0 0 4,0 8,0 12,1 16,1 20,1 24,1 28,1 32,2 36,2 40,2 44,2 48,2 52,3	0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,09 1,19	14,1 16,7 18,7 20,4 21,9 23,2 24,3 25,4 26,3 27,2 28,0 28,8	0,5 0,9 1,3 1,7 2,0 2,4 2,7 3,1 3,4 3,7 4,0 4,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8 293,5 345,7 405,1 472,2 547,7 632,2 726,3 830,6 945,6
	2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	16,9 19,2 21,6 24,0 26,4 28,8 31,2 33,6 36,0 38,4 40,8 43,2 45,6 48,0	12,8 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	1,2 1,3 1,4 1,6 1,8 2,0 2,2 2,3 2,5 2,7 2,9 3,0 3,2 3,4 3,6	34 34 35 37 38 39 40 41 41 42 43 43 44 45	4,8 5,2 5,6 6,0 6,6 7,1 7,7 8,2 8,7 9,3 9,8 10,2 10,7 11,2 11,7 12,1	44,4 59,1 75,7 94,4 115,1 142,1 171,5 203,2 237,1 273,2 311,3 351,5 393,6 437,7 483,7 531,5 581,2	0 0 0 0 0 0,4 1,6 3,6 6,4 10,0 14,4 19,6 25,6 32,4 40,0 48,4 57,6	0 0 0 0 0 0 0 4,0 8,0 12,1 16,1 20,1 24,1 28,1 32,2 36,2 40,2 44,2 48,2	0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,09	14,1 16,7 18,7 20,4 21,9 23,2 24,3 25,4 26,3 27,2 28,0	0,5 0,9 1,3 1,7 2,0 2,4 2,7 3,1 3,4 3,7 4,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31,7 44,4 59,1 75,7 94,4 115,1 142,3 173,0 207,9 247,8 293,5 345,7 405,1 472,2 547,7 632,2 726,3 830,6

H

	Tab.	32		Scala	a di M	oto Ur	niforme	T				Ī		
											Coef	f di so	abrezza	
	-		Pend.c	anale	В	B1	Н	L1	L2	H1	N1	N2	Tab	
S	EZION	JE	1c	0,03	5,00	9,00	2,50	10,00		_			+	
			10	0,00	0,00	3,00	2,50	10,00	10,00	2,00	1,75	2,3	32	
					-								-	
													-	
											<u> </u>	<u> </u>		
	6,00									,				
	0,00						T						T	
	5,00	+			-		-	_		+				
												The state of the s		
	4,00						1.02							
	.,													
\vdash	0.00					/	T							
	3,00							-	-	-			-	
	2,00	-	/				<u> </u>							
	1/2/5													
	1.00	1/												
\vdash	1,00	1				- 15 S S S S S S S S S S S S S S S S S S								
		/												1 1
	0,00	-					1			-				
	(0,0	100	0.0	200,0	30	0,00	400,0	50	0,0	600	0	700,0	800,0
							, .	.00,0		,0,0	000	, 0	700,0	000,0
h [m]		A1	C1	R1	K1	V1[m/s	01 [mc	1.0						1
	0,20	1,0	5,5			[WI IIIIO	(A2	C2	R2	K2	V2[m	Q2 Imc	Qtot [mc/s]
	0,40	2,1		0,2	17	1,3	1,3		C2 0	R2	K2	V2[m	Q2 [mc.	Qtot [mc/s]
	0,60		6,0	0,2	17 22			0		R2	K2	V2[m		1,3
		3,3				1,3	1,3	0	0	R2	K2	V2[m	0	1,3 4,9
	0,80	4,6	6,0 6,5 7,0	0,4 0,5 0,6	22	1,3 2,3	1,3 4,9	0 0 0	0	R2	K2	V2[m	0	1,3 4,9 10,3
	1,00	4,6 5,9	6,0 6,5	0,4 0,5	22 25	1,3 2,3 3,1	1,3 4,9 10,3	0 0 0 0	0 0 0	R2	K2	V2[m	0 0	1,3 4,9 10,3 17,4
	1,00 1,20	4,6 5,9 7,2	6,0 6,5 7,0 7,6 8,1	0,4 0,5 0,6 0,8 0,9	22 25 27 29 31	1,3 2,3 3,1 3,8 4,4 5,0	1,3 4,9 10,3 17,4 26,1 36,2	0 0 0 0 0 0	0 0 0 0 0	R2	K2	V2[m	0 0 0	1,3 4,9 10,3 17,4 26,1
	1,00 1,20 1,40	4,6 5,9 7,2 8,7	6,0 6,5 7,0 7,6 8,1 8,6	0,4 0,5 0,6 0,8 0,9 1,0	22 25 27 29 31 32	1,3 2,3 3,1 3,8 4,4 5,0 5,5	1,3 4,9 10,3 17,4 26,1 36,2 47,8	0 0 0 0 0 0 0	0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0	1,3 4,9 10,3 17,4
	1,00 1,20 1,40 1,60	4,6 5,9 7,2 8,7 10,2	6,0 6,5 7,0 7,6 8,1 8,6 9,1	0,4 0,5 0,6 0,8 0,9 1,0	22 25 27 29 31 32 33	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9	0 0 0 0 0 0 0	0 0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2
	1,00 1,20 1,40 1,60 1,80	4,6 5,9 7,2 8,7 10,2 11,7	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6	0,4 0,5 0,6 0,8 0,9 1,0 1,1	22 25 27 29 31 32 33 34	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5
1	1,00 1,20 1,40 1,60 1,80 2,00	4,6 5,9 7,2 8,7 10,2 11,7 13,3	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2	22 25 27 29 31 32 33 34 34	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	R2	K2	V2[m	0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5
7	1,00 1,20 1,40 1,60 1,80 2,00 2,20	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3	22 25 27 29 31 32 33 34 34 35	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	R2	K2		0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,20	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4	22 25 27 29 31 32 33 34 34 35 36	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6	22 25 27 29 31 32 33 34 34 35 36 37	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05	7,6	0,3	0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1 11,4	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6	22 25 27 29 31 32 33 34 34 35 36 37	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 177,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15	7,6 12,4	0,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1 11,4 11,4	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9	22 25 27 29 31 32 33 34 34 35 36 37 38	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 177,9 206,8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25	7,6 12,4 15,4	0,3 0,8 1,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 11,6 11,1 11,4 11,4 11,4	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1	22 25 27 29 31 32 33 34 34 35 36 37 38 39	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 177,9 206,8 237,5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34	7,6 12,4 15,4 17,7	0,3 0,8 1,3 1,8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0 25,8	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 11,4 11,4 11,4 11,4 11,4	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1 2,3	22 25 27 29 31 32 33 34 34 35 36 37 38 39 40	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3 9,9	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 177,9 206,8 237,5 270,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34 0,44	7,6 12,4 15,4 17,7 19,5	0,3 0,8 1,3 1,8 2,2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9 279,1
	1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0 25,8 27,6	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1 11,4 11,4 11,4 11,4 11,4	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1 2,3 2,4	22 25 27 29 31 32 33 34 34 35 36 37 38 39 40 41	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3 9,9 10,5	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 177,9 206,8 237,5 270,0 304,2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34 0,44 0,54	7,6 12,4 15,4 17,7 19,5 21,1	0,3 0,8 1,3 1,8 2,2 2,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9 279,1 320,4
	1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0 25,8 27,6 29,4	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1 11,4 11,4 11,4 11,4 11,4	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1 2,3 2,4 2,6	22 25 27 29 31 32 33 34 34 35 36 37 38 39 40 41	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3 9,9 10,5 11,0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 177,9 206,8 237,5 270,0 304,2 340,1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34 0,44 0,54 0,64	7,6 12,4 15,4 17,7 19,5 21,1 22,4	0,3 0,8 1,3 1,8 2,2 2,7 3,1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9 279,1 320,4 366,3
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0 25,8 27,6 29,4 31,2	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 11,4 11,4 11,4 11,4 11,4 11,4 11,4	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1 2,3 2,4 2,6 2,7	22 25 27 29 31 32 33 34 34 35 36 37 38 39 40 41 42 42	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3 9,9 10,5 11,0 12,1	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 177,9 206,8 237,5 270,0 304,2 340,1 377,5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34 0,44 0,54 0,64 0,74	7,6 12,4 15,4 17,7 19,5 21,1 22,4 23,6	0,3 0,8 1,3 1,8 2,2 2,7 3,1 3,5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9 279,1 320,4 366,3 417,0
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0 25,8 27,6 29,4 31,2 33,0	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 11,4 11,4 11,4 11,4 11,4 11,4 11,4	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1 2,3 2,4 2,6 2,7 2,9	22 25 27 29 31 32 33 34 34 35 36 37 38 39 40 41 42 42 43	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3 9,9 10,5 11,0 11,6 12,1 12,6	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 177,9 206,8 237,5 270,0 304,2 340,1 377,5 416,6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34 0,44 0,54 0,64 0,74 0,83	7,6 12,4 15,4 17,7 19,5 21,1 22,4 23,6 24,7	0,3 0,8 1,3 1,8 2,2 2,7 3,1 3,5 3,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9 279,1 320,4 366,3 417,0 473,1
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 4,00 4,20 4,40	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0 25,8 27,6 29,4 31,2 33,0 34,8	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1 11,4 11,4 11,4 11,4 11,4 11,4 11	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1 2,3 2,4 2,6 2,7 2,9 3,1	22 25 27 29 31 32 33 34 35 36 37 38 39 40 41 42 42 43 43	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3 9,9 10,5 11,0 11,6 12,1 12,6 13,1	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 206,8 237,5 270,0 304,2 340,1 377,5 416,6 457,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34 0,44 0,54 0,64 0,74 0,83 0,93	7,6 12,4 15,4 17,7 19,5 21,1 22,4 23,6 24,7 25,7	0,3 0,8 1,3 1,8 2,2 2,7 3,1 3,5 3,9 4,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9 279,1 320,4 366,3 417,0 473,1 534,9
	1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 4,00 4,20 4,40 4,60	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0 25,8 27,6 29,4 31,2 33,0 34,8 36,6	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1 11,4 11,4 11,4 11,4 11,4 11,4 11	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1 2,3 2,4 2,6 2,7 2,9 3,1 3,2	22 25 27 29 31 32 33 34 34 35 36 37 38 39 40 41 42 42 43 43	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3 9,9 10,5 11,0 11,6 12,1 12,6 13,1 13,7	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 206,8 237,5 270,0 304,2 340,1 377,5 416,6 457,3 499,5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34 0,44 0,54 0,64 0,74 0,83 0,93 1,03	7,6 12,4 15,4 17,7 19,5 21,1 22,4 23,6 24,7 25,7 26,6	0,3 0,8 1,3 1,8 2,2 2,7 3,1 3,5 3,9 4,3 4,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9 279,1 320,4 366,3 417,0 473,1 534,9 602,7
	1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 4,00 4,20 4,40	4,6 5,9 7,2 8,7 10,2 11,7 13,3 15,0 16,8 18,6 20,4 22,2 24,0 25,8 27,6 29,4 31,2 33,0 34,8	6,0 6,5 7,0 7,6 8,1 8,6 9,1 9,6 10,1 10,6 11,1 11,4 11,4 11,4 11,4 11,4 11,4 11	0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8 1,9 2,1 2,3 2,4 2,6 2,7 2,9 3,1	22 25 27 29 31 32 33 34 35 36 37 38 39 40 41 42 42 43 43	1,3 2,3 3,1 3,8 4,4 5,0 5,5 6,0 6,4 6,9 7,2 7,6 8,1 8,7 9,3 9,9 10,5 11,0 11,6 12,1 12,6 13,1	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 206,8 237,5 270,0 304,2 340,1 377,5 416,6 457,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,05 0,15 0,25 0,34 0,44 0,54 0,64 0,74 0,83 0,93	7,6 12,4 15,4 17,7 19,5 21,1 22,4 23,6 24,7 25,7	0,3 0,8 1,3 1,8 2,2 2,7 3,1 3,5 3,9 4,3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,3 4,9 10,3 17,4 26,1 36,2 47,8 60,9 75,5 91,5 108,9 127,9 150,8 178,2 208,4 241,9 279,1 320,4 366,3 417,0 473,1 534,9 602,7 676,8

	Tab.	33		Sca	la di N	loto U	niforme	2.1			Τ	T		T
					T			-	+	+	Coe	ff di e	cabrezza	
			Pend.	canale	В	B1	Н	L1	L2	H1	N1	N2	Tab	1
SE	EZION	VE.	1d	0,03	5,00	5,00	2,80	4,00				_		_
		T	-		1	3,00	2,00	4,00	4,00	2,00	0,75	2,3	33	
				†	+		-	-	+		-	+-	+	
							 	+	1	-	-	+	+	
					+	±				-	<u> </u>			1
	6,00													
_								21.5						
_	5,00													
	5,00				-									
-														
	4,00	+			-									
	3,00	-											<u> </u>	
					/									
	2,00													
	2,00		-					100 C		11		-		
_	1.00													
	1,00	1												
-														
	0,00	-												
	(0,0		10	0,0		200,0		300,	Ω		400,0	1	500.0
					-,-		200,0		000,	U		400,0	,	500,0
								T	1					
											-	-		
[m]		A1	C1	R1	K1	V1[m/s	Q1 [mc/	A2	C2	R2	K2	\/2[m	02 [ma	Qtot [mc/s]
	0,20	1,0	5,4	0,2	32	2,4	2,4		0	1 12	112	۷۷[۱۱	0	
	0,40	2,0	5,8	0,3	38	3,9	7,8		0				0	7,8
	0,60	3,0	6,2	0,5	42	5,0	15,1	0	0				0	15,1
	0,80	4,0	6,6	0,6	44	6,0	23,9		0				0	23,9
	1,00	5,0	7,0	0,7	46	6,7	33,7	0	0				0	33,7
	1,20 1,40	6,0	7,4	0,8	47	7,4	44,4		0				0	44,4
	1,60	7,0	7,8	0,9	49	8,0	55,8		0				0	55,8
	1,80	8,0 9,0	8,2	1,0	49	8,5	67,7		0				0	
200	- 100	3,0	0 6					_						67,7
	2.00	10.0	8,6	1,0	50	8,9	80,0		0				0	80,0
	2,00 2,20	10,0	9,0	1,1	51	9,3	92,8	0	0				0	80,0 92,8
2	2,00 2,20 2,40	11,0	9,0 9,4	1,1 1,2	51 51	9,3 9,6	92,8 105,9	0	0 0 0				0 0 0	80,0 92,8 105,9
2	2,20 2,40 2,60		9,0	1,1 1,2 1,2	51 51 52	9,3 9,6 9,9	92,8 105,9 119,3	0	0 0 0 0				0 0 0 0	80,0 92,8 105,9 119,3
	2,20 2,40 2,60 2,80	11,0 12,0	9,0 9,4 9,8	1,1 1,2	51 51	9,3 9,6 9,9 10,2	92,8 105,9 119,3 132,9	0 0 0 0	0 0 0 0 0 0 0				0 0 0 0	80,0 92,8 105,9 119,3 132,9
2 2 2 3	2,20 2,40 2,60 2,80 3,00	11,0 12,0 13,0	9,0 9,4 9,8 10,2	1,1 1,2 1,2 1,3	51 51 52 52	9,3 9,6 9,9 10,2 10,5	92,8 105,9 119,3 132,9 146,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0.09	10.0		0 0 0 0 0	80,0 92,8 105,9 119,3 132,9 146,7
2 2 2 3 3	2,20 2,40 2,60 2,80 3,00 3,20	11,0 12,0 13,0 14,0	9,0 9,4 9,8 10,2 10,6	1,1 1,2 1,2 1,3 1,3	51 51 52 52 52 53	9,3 9,6 9,9 10,2	92,8 105,9 119,3 132,9	0 0 0 0	0 0 0 0 0 0 0 0	0,09	10,0	0,5	0 0 0 0 0 0 0	80,0 92,8 105,9 119,3 132,9 146,7 165,0
2 2 2 3 3 3	2,20 2,40 2,60 2,80 3,00 3,20 3,40	11,0 12,0 13,0 14,0 15,0 16,0 17,0	9,0 9,4 9,8 10,2 10,6 10,6 10,6	1,1 1,2 1,2 1,3 1,3 1,4 1,5	51 51 52 52 53 53 54 55	9,3 9,6 9,9 10,2 10,5 11,0	92,8 105,9 119,3 132,9 146,7 164,9	0 0 0 0 0 0 0	0 0 0 0 0	0,09 0,18 0,27	13,5	0,5	0 0 0 0 0 0 0 0 0 0 0 0,0	80,0 92,8 105,9 119,3 132,9 146,7 165,0 184,2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60	11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0	9,0 9,4 9,8 10,2 10,6 10,6 10,6 10,6	1,1 1,2 1,2 1,3 1,3 1,4 1,5 1,6 1,7	51 51 52 52 53 53 54 55 55	9,3 9,6 9,9 10,2 10,5 11,0	92,8 105,9 119,3 132,9 146,7 164,9 183,9	0 0 0 0 0 0 0,1 0,3	0 0 0 0 0 0 0 0 0 0 0,9	0,18		0,5 1,0 1,4	0 0 0 0 0 0 0 0 0 0 0,0 0,3 1,0	80,0 92,8 105,9 119,3 132,9 146,7 165,0 184,2 204,8
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80	11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0	9,0 9,4 9,8 10,2 10,6 10,6 10,6 10,6 10,6	1,1 1,2 1,2 1,3 1,3 1,4 1,5 1,6 1,7	51 51 52 52 53 53 54 55 55	9,3 9,6 9,9 10,2 10,5 11,0 11,5 12,0 12,5 12,9	92,8 105,9 119,3 132,9 146,7 164,9 183,9 203,7	0 0 0 0 0 0 0 0,1 0,3 0,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,8 2,7	0,18 0,27	13,5 16,0	0,5	0 0 0 0 0 0 0 0 0 0 0,0 0,0 0,3 1,0 2,4	80,0 92,8 105,9 119,3 132,9 146,7 165,0 184,2 204,8 226,7
3 3 3 3 4	2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00	11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0	9.0 9,4 9,8 10,2 10,6 10,6 10,6 10,6 10,6 10,6	1,1 1,2 1,2 1,3 1,3 1,4 1,5 1,6 1,7 1,8 1,9	51 51 52 52 53 53 53 54 55 55 56	9,3 9,6 9,9 10,2 10,5 11,0 11,5 12,0 12,5 12,9 13,4	92,8 105,9 119,3 132,9 146,7 164,9 183,9 203,7 224,3 245,7 267,8	0 0 0 0 0 0 0,1 0,3 0,7 1,3 2,0	0 0 0 0 0 0 0 0 0 0 0 0 0 1,8 2,7 3,6	0,18 0,27 0,36	13,5 16,0 18,0	0,5 1,0 1,4 1,9	0 0 0 0 0 0 0 0 0 0 0,0 0,3 1,0	80,0 92,8 105,9 119,3 132,9 146,7 165,0 184,2 204,8 226,7 250,2
33 33 34 44	2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0	9,0 9,4 9,8 10,2 10,6 10,6 10,6 10,6 10,6 10,6 10,6	1,1 1,2 1,2 1,3 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0	51 51 52 52 53 53 54 55 55 56 56	9,3 9,6 9,9 10,2 10,5 11,0 11,5 12,0 12,5 12,9 13,4 13,8	92,8 105,9 119,3 132,9 146,7 164,9 183,9 203,7 224,3 245,7 267,8 290,6	0 0 0 0 0 0 0,1 0,3 0,7 1,3 2,0 2,9 3,9	0 0 0 0 0 0 0 0 0 0 0 0 1.8 2.7 3.6 4.5 5.4 6.3	0,18 0,27 0,36 0,45 0,54 0,63	13,5 16,0 18,0 19,6	0,5 1,0 1,4 1,9 2,3	0 0 0 0 0 0 0 0 0,0 0,3 1,0 2,4 4,5	80,0 92,8 105,9 119,3 132,9 146,7 165,0 184,2 204,8 226,7 250,2 275,4
33333344444444444	2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0 22,0	9,0 9,4 9,8 10,2 10,6 10,6 10,6 10,6 10,6 10,6 10,6 10,6	1,1 1,2 1,2 1,3 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1	51 51 52 52 53 53 54 55 55 56 56 57	9,3 9,6 9,9 10,2 10,5 11,0 11,5 12,0 12,5 12,9 13,4 13,8 14,3	92,8 105,9 119,3 132,9 146,7 164,9 183,9 203,7 224,3 245,7 267,8 290,6 314,1	0 0 0 0 0 0 0,1 0,3 0,7 1,3 2,0 2,9 3,9 5,1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,18 0,27 0,36 0,45 0,54 0,63 0,72	13,5 16,0 18,0 19,6 21,0	0,5 1,0 1,4 1,9 2,3 2,7	0 0 0 0 0 0 0 0,0 0,3 1,0 2,4 4,5 7,7	67,7 80,0 92,8 105,9 119,3 132,9 146,7 165,0 184,2 204,8 226,7 250,2 275,4 302,5 331,6
33 33 34 44 44 44	2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0	9,0 9,4 9,8 10,2 10,6 10,6 10,6 10,6 10,6 10,6 10,6	1,1 1,2 1,2 1,3 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0	51 51 52 52 53 53 54 55 55 56 56	9,3 9,6 9,9 10,2 10,5 11,0 11,5 12,0 12,5 12,9 13,4 13,8	92,8 105,9 119,3 132,9 146,7 164,9 183,9 203,7 224,3 245,7 267,8 290,6	0 0 0 0 0 0 0,1 0,3 0,7 1,3 2,0 2,9 3,9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,18 0,27 0,36 0,45 0,54 0,63	13,5 16,0 18,0 19,6 21,0 22,3	0,5 1,0 1,4 1,9 2,3 2,7 3,1	0 0 0 0 0 0 0 0,0 0,3 1,0 2,4 4,5 7,7	80,0 92,8 105,9 119,3 132,9 146,7 165,0 184,2 204,8 226,7 250,2 275,4

Tab.	. 34		Scal	a di M	oto U	niforme					1	1	
						T			-	Coef	ff di so	cabrezza	1
		Pend.	canale	В	B1	Н	L1	L2	H1	N1	N2	Tab	+
SEZIO	NE	1e	0,03	8,00	9,00	2,00	4,00	4,00	2,00		_	+	
	T	-			3,00	2,00	4,00	4,00	2,00	0,75	2,3	34	
			1-			-	 	+	 	+	-	-	-
						1 10	1			-		+	-
							_	_					
6,00	-					2.1	,						
,													
													1 .
5,00													
-													
4,00	+												
3,00													- 24
- 0,00													
0.00													
2,00	1						_		-				
											1		,
1,00	-											4	
0,00													
	0 0		222										
	0,0		200,0		400,0		0,00		800,0)	100	0,0	1200,0
	0,0		200,0		400,0		500,0		800,0)	100	0,0	1200,0
	0,0		200,0		400,0		500,0	e., ×.	800,0)	100	0,0	1200,0
						**.							
n]	A1	C1	R1	K1	V1[m/s	Q1 [mc/	A2	C2	800,0 R2	K2			1200,0 Qtot [mc/s
n] 0,20	A1 1,6	C1 8,4	R1 0,2	K1 32	V1[m/s 2,4	Q1 [mc/	A2 0	C2 0				Q2 [mc/	
n] 0,20 0,40	A1 1,6 3,2	C1 8,4 8,8	R1 0,2 0,4	K1 32 39	V1[m/s 2,4 4,1	Q1 [mc/ 3,9 13,3	A2 0	C2 0				Q2 [mc/ 0	Qtot [mc/s
n] 0,20 0,40 0,60	A1 1,6 3,2 4,9	C1 8,4 8,8 9,2	R1 0,2 0,4 0,5	K1 32 39 43	V1[m/s 2,4 4,1 5,4	Q1 [mc/ 3,9 13,3 26,5	A2 0 0	C2 0 0			V2[m	Q2 [mc/ 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80	A1 1,6 3,2 4,9 6,6	C1 8,4 8,8 9,2 9,6	R1 0,2 0,4 0,5 0,7	K1 32 39 43 46	V1[m/s 2,4 4,1 5,4 6,5	Q1 [mc/ 3,9 13,3 26,5 42,9	A2 0 0 0	C2 0 0 0			V2[m	Q2 [mc/ 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00	A1 1,6 3,2 4,9 6,6 8,3	C1 8,4 8,8 9,2 9,6 10,1	R1 0,2 0,4 0,5 0,7 0,8	K1 32 39, 43 46 48	V1[m/s 2,4 4,1 5,4 6,5 7,5	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8	A2 0 0 0 0	C2 0 0 0 0			V2[m	Q2 [mc/ 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00 1,20	A1 1,6 3,2 4,9 6,6 8,3 10,0	C1 8,4 8,8 9,2 9,6 10,1 10,5	R1 0,2 0,4 0,5 0,7 0,8 1,0	K1 32 39 43 46 48 49	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1	A2 0 0 0 0 0	C2 0 0 0 0 0			V2[m	Q2 [mc/ 0 0 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9	R1 0,2 0,4 0,5 0,7 0,8 1,0	K1 32 39, 43 46 48 49 50	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4	A2 0 0 0 0 0 0	C2 0 0 0 0 0 0			V2[m	Q2 [mc/ 0 0 0 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80	A1 1,6 3,2 4,9 6,6 8,3 10,0	C1 8,4 8,8 9,2 9,6 10,1 10,5	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2	K1 32 39 43 46 48 49 50 52	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5	A2 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0			V2[m	Q2 [mc/ 0 0 0 0 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3	R1 0,2 0,4 0,5 0,7 0,8 1,0	K1 32 39, 43 46 48 49 50	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2	A2 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0			V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3	K1 32 39, 43 46 48 49 50 52 52	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6	A2 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0	R2	K2	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4	K1 32 39 43 46 48 49 50 52 52 52	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R2	K2	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6	K1 32 39, 43 46 48 49 50 52 52 53 54	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6	A2 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R2 0,09 0,18	10,0 13,5	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7	K1 32 39, 43 46 48 49 50 52 52 53 54 55	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R2	10,0 13,5 16,0	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1	K1 32 39 43 46 48 49 50 52 53 54 55 56 57 58	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27	10,0 13,5	0,5 1,0 1,4 1,9	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3	K1 32 39, 43 46 48 49 50 52 52 53 54 55 56 57 58 58	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36	10,0 13,5 16,0 18,0	V2[m	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8 29,6	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3 2,4	K1 32 39 43 46 48 49 50 52 52 53 54 55 56 57 58 58 58	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3 15,9	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6 380,5	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45	10,0 13,5 16,0 18,0 19,6	0,5 1,0 1,4 1,9 2,3	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 2 2 2 3 3 4 3 3 4 3
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,40 2,60 2,80 3,00 3,20 3,40 3,60	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8 29,6 31,4	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3 2,4 2,6	K1 32 39 43 46 48 49 50 52 53 54 55 56 57 58 58 59 59	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3 15,9 16,6	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6 380,5 425,4	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54	10,0 13,5 16,0 18,0 19,6 21,0	0,5 1,0 1,4 1,9 2,3 2,7	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8 29,6 31,4 33,2	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3 2,4 2,6 2,7	K1 32 39 43 46 48 49 50 52 53 54 55 56 57 58 58 59 59 60	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3 15,9 16,6 17,2	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6 380,5 425,4 472,1	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63	10,0 13,5 16,0 18,0 19,6 21,0 22,3	0,5 1,0 1,4 1,9 2,3 2,7 3,1	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8 29,6 31,4 33,2 35,0	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3 2,4 2,6 2,7 2,9	K1 32 39 43 46 48 49 50 52 52 53 54 55 56 57 58 58 59 59 60 60	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3 15,9 16,6 17,2 17,8	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6 380,5 425,4 472,1 520,7 571,0 623,0	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,63 0,72	10,0 13,5 16,0 19,6 21,0 22,3 23,4	0,5 1,0 1,4 1,9 2,3 2,7 3,1 3,4	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8 29,6 31,4 33,2 35,0 36,8	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3 2,4 2,6 2,7 2,9 3,0	K1 32 39, 43 46 48 49 50 52 52 53 54 55 56 57 58 58 59 59 60 60 61	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3 15,9 16,6 17,2 17,8 18,4	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6 380,5 425,4 472,1 520,7 571,0 623,0 676,8	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72 0,80	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4	0,5 1,0 1,4 1,9 2,3 2,7 3,1 3,4 3,8	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8 29,6 31,4 33,2 35,0 36,8 38,6	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3 2,4 2,6 2,7 2,9 3,0 3,2	K1 32 39 43 46 48 49 50 52 52 53 54 55 56 57 58 58 59 60 60 61 61	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3 15,9 16,6 17,2 17,8 18,4 18,9	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6 380,5 425,4 472,1 520,7 571,0 623,0 676,8 732,2	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72 0,80 0,89	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4 25,3	0,5 1,0 1,4 1,9 2,3 2,7 3,1 3,4 3,8 4,2	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40 4,60	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8 29,6 31,4 33,2 35,0 36,8 38,6 40,4	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1 12,1 12,1 12,1 12,1 12,1 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3 2,4 2,6 2,7 2,9 3,0 3,2 3,3	K1 32 39 43 46 48 49 50 52 52 53 54 55 56 57 58 58 59 60 60 61 61 61 62	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3 15,9 16,6 17,2 17,8 18,4 18,9 19,5	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6 380,5 425,4 472,1 520,7 571,0 623,0 676,8 732,2 789,2	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72 0,80 0,89 0,98	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4 25,3 26,2	0,5 1,0 1,4 1,9 2,3 2,7 3,1 3,4 3,8 4,2 4,5	Q2 [mc/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s
n] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	A1 1,6 3,2 4,9 6,6 8,3 10,0 11,7 13,5 15,3 17,0 18,8 20,6 22,4 24,2 26,0 27,8 29,6 31,4 33,2 35,0 36,8 38,6	C1 8,4 8,8 9,2 9,6 10,1 10,5 10,9 11,3 11,7 12,1	R1 0,2 0,4 0,5 0,7 0,8 1,0 1,1 1,2 1,3 1,4 1,6 1,7 1,9 2,0 2,1 2,3 2,4 2,6 2,7 2,9 3,0 3,2	K1 32 39 43 46 48 49 50 52 52 53 54 55 56 57 58 58 59 60 60 61 61	V1[m/s 2,4 4,1 5,4 6,5 7,5 8,3 9,1 9,8 10,4 10,9 11,7 12,5 13,2 13,9 14,6 15,3 15,9 16,6 17,2 17,8 18,4 18,9	Q1 [mc/ 3,9 13,3 26,5 42,9 61,8 83,1 106,4 131,5 158,2 186,6 221,1 257,8 296,7 337,6 380,5 425,4 472,1 520,7 571,0 623,0 676,8 732,2	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72 0,80 0,89 0,98 1,07	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4 25,3 26,2 27,0	0,5 1,0 1,4 1,9 2,3 2,7 3,1 3,4 3,8 4,2 4,5 4,8	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s

Tab	. 36		Sca	la di N	loto U	niforme	Sin'the	1					1
				-						Coe	ff di sc	abrezza	l I
		Pend	.canale	В	B1	Н	L1	L2	H1	N1	N2	Tab	
SEZIO	NE	1g	0,05	4,00	12,00	4,00	8,00	8,00	1,00	1,75	2,3	36	
									1	1,73	2,3	30	
										1			
			1								1	 	
				-						1	1		
6,00	7					T							<u> </u>
5,00) —		-					45					
4,00	,												
200													
3,00	'						_		-				
_													
2,00	+												
							,						
1,00	1												
7													
0.00	1												
0,00	1			_		-							
	0,0	100	0,0	200,0	30	0,0	0,00	50	0,0	600	,0	700.0	800,0
	0,0	100	0,0	200,0	30	0,0	00,0	50	0,0	600	,0	700,0	800,0
	0,0	100	0,0	200,0	30	00,0 4	00,0	500	0,0	600	,0	700,0	800,0
[m]	A1	C1	R1	K1 '	V1[m/	Q1 [mc/	A2 (C2					Qtot [mc/s]
[m] 0,20	A1 0,8	C1 4,6	R1 0,2	K1 17.	V1[m/s	Q1 [mc/	A2 (C2			V2[m	Q2 [mc	Qtot [mc/s]
[m] 0,20 0,40	A1 0,8 1,8	C1 4,6 5,1	R1 0,2 0,3	K1 17.	V1[m/s 1,6 2,9	Q1 [mc/ 1,4 5,1	A2 (0) (0)	C2			V2[m	Q2 [mc/	Qtot [mc/s]
[m] 0,20	A1 0,8 1,8 2,8	C1 4,6 5,1 5,7	R1 0,2 0,3 0,5	K1 17. 22 25	V1[m/s 1,6 2,9 3,9	Q1 [mc/ 1,4 5,1 10,9	A2 (0) (0) (0) (0)	C2 I			V2[m	Q2 [mc	Qtot [mc/s]
[m] 0,20 0,40 0,60	A1 0,8 1,8	C1 4,6 5,1 5,7 6,3	R1 0,2 0,3 0,5 0,6	K1 17. 22 25 27	V1[m/s 1,6 2,9 3,9 4,8	Q1 [mc/ 1,4 5,1 10,9 18,6	A2 (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mc.	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00 1,20	A1 0,8 1,8 2,8 3,9 5,1 6,3	C1 4,6 5,1 5,7	R1 0,2 0,3 0,5	K1 17. 22 25	V1[m/s 1,6 2,9 3,9 4,8 5,5	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1	A2 (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mc.	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0	R1 0,2 0,3 0,5 0,6 0,7	K1 17. 22 25 27 29	V1[m/s 1,6 2,9 3,9 4,8	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5	A2 (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mca	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0	K1 17, 22 25 27 29 30	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mc.	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2	K1 17, 22 25 27 29 30 31 32 33	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2 0 0 0 0 0 0 0 0 0			V2[m	Q2 [mc,	Qtot [mc/s]
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3	K1 17, 22 25 27 29 30 31 32 33 34	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mc.	Qtot [mc/s] 10 18 28 52 67 85 104
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4	K1 17. 22 25 27 29 30 31 32 33 34 35	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mca	Qtot [mc/s] 10 18 28 39 52 67 88 104
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4	K1 17. 22 25 27 29 30 31 32 33 34 35 35	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5	Q1 [mc, 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mc.	Qtot [mc/s] 10 13 28 39 52 67 85 104 125 148
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5	K1 17, 22 25 27 29 30 31 32 33 34 35 35 36	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3 173,6	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m]	Q2 [mc.	Qtot [mc/s] 10 18 28 39 52 67 85 104 125 148 173
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5 1,6	K1 17, 22 25 27 29 30 31 32 33 34 35 35 36 37	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3 173,6 201,1	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mca	Qtot [mc/s] 10 18 28 39 52 67 85 104 125 148 173 201
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5 1,6 1,7	K1 17. 22 25 27 29 30 31 32 33 34 35 35 36 37 37	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3 201,1 230,9	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m]	Q2 [mca	Qtot [mc/s] 10 18 28 39 52 67 85 104 125 148 173 201 230
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3 23,3	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5 13,1	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5 1,6 1,7 1,8	K1 17. 22 25 27 29 30 31 32 33 34 35 36 37 37 38	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9 11,3	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3 173,6 201,1 230,9 0 263,0	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m]	Q2 [mc.	Qtot [mc/s] 10 18 28 39 52 67 88 104 125 148 173 201 230 263
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5 13,1 13,6	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5 1,6 1,7 1,8 1,9	K1 17. 22 25 27 29 30 31 32 33 34 35 36 37 37 38 38 38	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9 11,3 11,7	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3 173,6 201,1 230,9 0 263,0 0 297,5	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m]	Q2 [mc.	Qtot [mc/s] 10 13 28 39 52 67 85 104 125 148 173 201 230 263 297
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 3,00 3,20 3,40 3,60 3,80	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3 23,3 25,5	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5 13,1	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0	K1 17. 22 25 27 29 30 31 32 33 34 35 36 37 37 38 38 39	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9 11,3 11,7 12,1	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3 201,1 230,9 263,0 297,5 0 334,4	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m	Q2 [mca	Qtot [mc/s] 10 18 28 39 52 67 85 104 125 148 173 201 230 263 297
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3 23,3 25,5 27,7	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5 13,1 13,6 14,2	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5 1,6 1,7 1,8 1,9	K1 17. 22 25 27 29 30 31 32 33 34 35 36 37 37 38 38 38	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9 11,3 11,7 12,1 12,5	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 201,1 230,9 263,0 297,5 0 334,4 0 373,8 0	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2			V2[m] (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	Q2 [mca	Qtot [mc/s] 10 18 28 39 52 67 85 104 125 148 173 201 230 263 297 334 373
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3 23,3 25,5 27,7 30,0	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5 13,1 13,6 14,2 14,7	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,0	K1 17. 22 25 27 29 30 31 32 33 34 35 36 37 37 38 38 39 39 39	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9 11,3 11,7 12,1	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 230,9 263,0 297,5 334,4 0 373,8 0 415,7	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	C2	R2	K2	V2[m] (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	Q2 [mca	Qtot [mc/s] 10 18 28 39 52 67 85 104 125 148 173 201 230 263 297 334 373 415
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3 23,3 25,5 27,7 30,0 32,4 34,8 37,2	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5 13,1 13,6 14,2 14,7 15,3 15,3	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,0 2,1	K1 17. 22 25 27 29 30 31 32 33 34 35 36 37 37 38 38 39 39 39 39	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9 11,3 11,7 12,1 12,5 12,8	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 201,1 230,9 263,0 297,5 0 334,4 0 373,8 0	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	3,2	R2	K2	V2[m	Q2 [mca	Qtot [mc/s] 10 13 28 39 52 67 85 104 125 148 173 201 230 263 297 334 373 415
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40 4,60	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3 23,3 25,5 27,7 30,0 32,4 34,8 37,2 39,6	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5 13,1 13,6 14,2 14,7 15,3 15,3 15,3 15,3	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,0 2,1 2,3 2,4 2,6	K1 17. 22 25 27 29 30 31 32 33 34 35 36 37 37 38 38 39 39 39 40	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9 11,3 11,7 12,1 12,5 12,8 13,6	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3 173,6 201,1 230,9 0 263,0 0 297,5 0 334,4 0 373,8 0 415,7 0 471,8	A2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	3,2	R2	10,5 14,1	V2[m] (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	Q2 [mc.	Qtot [mc/s] 10 18 28 39 52 67 85 104 125 148 173 201 230 263 297 334 373 415 472 532
[m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	A1 0,8 1,8 2,8 3,9 5,1 6,3 7,7 9,1 10,6 12,2 13,8 15,6 17,4 19,3 21,3 23,3 25,5 27,7 30,0 32,4 34,8 37,2	C1 4,6 5,1 5,7 6,3 6,8 7,4 8,0 8,5 9,1 9,7 10,2 10,8 11,4 11,9 12,5 13,1 13,6 14,2 14,7 15,3 15,3	R1 0,2 0,3 0,5 0,6 0,7 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,0 2,1 2,3 2,4	K1 17. 22 25 27 29 30 31 32 33 34 35 36 37 37 38 38 39 39 40 41	V1[m/s 1,6 2,9 3,9 4,8 5,5 6,2 6,9 7,5 8,0 8,5 9,0 9,5 10,0 10,4 10,9 11,3 11,7 12,1 12,5 12,8 13,6 14,3	Q1 [mc/ 1,4 5,1 10,9 18,6 28,1 39,5 52,8 67,9 85,0 104,0 125,1 148,3 201,1 230,9 263,0 0 297,5 0 334,4 0 373,8 0 415,7 0 471,8 530,8	A2 (00 00 00 00 00 00 00 00 00 00 00 00 00	3,2 6,4 9,7	R2	K2	V2[m	Q2 [mca	Qtot [mc/s] 10 13 28 39 52 67 85 104 125 148 173 201 230 263 297 334 373 415

Iai	b. 37		Sc	ala di	Moto l	Jniform	ie 🗀	20		- 1			
	-	Danie	, ,							Co	eff di s	scabrezz	a
SEZIC	DAIE		d.canale		B1	H	L1	L2	H1	N1	N2	Tab	
SEZIC	INE	1h	0,0	5 5,0	5,00	1,80	6,0	00 6,0	00 3,	00 1,	3 2,3	0 37	
		_	+-	-	-	-							
1			+-	+-	+	+	-	-		-	-		
6,0	0 —						•						_
									"				
5,0	o 📙												
4,00													
_													
3,00													-
3,00	,					-		_		-			
2,00	, —				-								
]								.					
1,00	1	/	+		-								
_													
0,00	-												
-	0,0	10	0,00	20	0,0	300,0	,	400,0					
	•				<i>,</i> 0.0	300.0	1	41111	1	500,0	6	000	7000
						,		400,0		000,0	O	00,0	700,0
								100,0	1	7	7	100,0	700,0
						,		100,0				00,0	700,0
The same of the sa	A1	C1	R1	K1		·							
0,20	1,0	C1 5,4	R1 0,2	K1 22		Q1 [mc	A2	C2	R2	K2		Q2 [mc	Qtot [mc/s]
0,20 0,40	1,0 2,0	C1 5,4 5,8	R1 0,2 0,3	K1 22 27	V1[m/s 2,1 3,6	Q1 [mc	A2 0	C2				Q2 [mc.	Qtot [mc/s]
0,20 0,40 0,60	1,0 2,0 3,0	C1 5,4 5,8 6,2	R1 0,2 0,3 0,5	K1 22 27 30	V1[m/s 2,1 3,6 4,7	Q1 [mc 2,1 7,1 14,2	A2 0 0	C2 0 0			V2[m	Q2 [mc	Qtot [mc/s]
0,20 0,40 0,60 0,80	1,0 2,0 3,0 4,0	C1 5,4 5,8 6,2 6,6	R1 0,2 0,3 0,5 0,6	K1 22 27 30 33	V1[m/s 2,1 3,6 4,7 5,7	Q1 [mc 2,1 7,1 14,2 22,7	0 0 0 0	C2 0 0 0			V2[m	Q2 [mc.	Qtot [mc/s] 2, 7, 14,
0,20 0,40 0,60	1,0 2,0 3,0 4,0 5,0	C1 5,4 5,8 6,2 6,6 7,0	R1 0,2 0,3 0,5 0,6 0,7	K1 22 27 30 33 34	V1[m/s 2,1 3,6 4,7 5,7 6,5	Q1 [mc 2,1 7,1 14,2 22,7 32,4	0 0 0 0 0	C2 0 0 0			V2[m	Q2 [mc. 0 0 0 0	Qtot [mc/s] 2 7, 14, 22,
0,20 0,40 0,60 0,80 1,00 1,20 1,40	1,0 2,0 3,0 4,0	C1 5,4 5,8 6,2 6,6	R1 0,2 0,3 0,5 0,6 0,7 0,8	K1 22 27 30 33 34 36	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0	A2 0 0 0 0 0	C2 0 0 0 0 0			V2[m	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43,
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0	C1 5,4 5,8 6,2 6,6 7,0 7,4	R1 0,2 0,3 0,5 0,6 0,7	K1 22 27 30 33 34	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4	0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0			V2[m	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54,
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0	K1 22 27 30 33 34 36 37	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4	0 0 0 0 0 0 0 0	C2 0 0 0 0 0			V2[m	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66,
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0	K1 22 27 30 33 34 36 37 38 38 38	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4	0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0	R2	K2	V2[m	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66, 78,
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3	K1 22 27 30 33 34 36 37 38 38 39 40	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6	0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0			V2[m	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66, 78, 95,
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4	K1 22 27 30 33 34 36 37 38 38 39 40 41	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3	0 A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R2	K2	V2[m	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66, 78, 95, 113,
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5	K1 22 27 30 33 34 36 37 38 38 39 40 41 42	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1	0 A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1,3	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36	10,0 13,5 16,0 18,0	V2[m	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132,
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45	10,0 13,5 16,0 18,0 19,6	V2[m 0,7 1,3 1,9 2,4 2,9	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132, 154,2
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43 44	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54	10,0 13,5 16,0 18,0 19,6 21,0	V2[m 0,7 1,3 1,9 2,4 2,9 3,4	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132,6 154,2 178,0 204,1
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6 1,7	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9 13,6	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2 217,4	AA2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63	10,0 13,5 16,0 18,0 19,6 21,0 22,3	V2[m 0,7 1,3 1,9 2,4 2,9 3,4 3,9	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132, 178,0 204,1 232,8
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6 1,7 1,9	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43 44 45	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2	0 A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,63 0,72	10,0 13,5 16,0 19,6 21,0 22,3 23,4	V2[m 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,4	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2, 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132,6 154,2 178,0 204,1 232,8 264,2
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6 1,7 1,9 2,0 2,1 2,2	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43 44 45 45 46	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9 13,6 14,2	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2 217,4 241,6	AA2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72 0,80	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4	V2[m 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,4 4,9	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132, 154,2 178,6 204,1 232,8 264,2 298,6
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 20,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6 1,7 1,9 2,0 2,1 2,2 2,3	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43 44 45 45 46 46 47	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9 13,6 14,2 14,8 15,4 16,0	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2 217,4 241,6 266,8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,63 0,72	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4 25,3	V2[m 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,4 4,9 5,4	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2 7 14 22, 32, 43, 54, 66, 78, 95, 113, 132, 154,2 204,2 298,6 336,0
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6 1,7 1,9 2,0 2,1 2,2 2,3 2,4	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43 44 45 45 46 46 47 47	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9 13,6 14,2 14,8 15,4 16,0 16,6	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2 217,4 241,6 266,8 293,1 320,3 348,5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72 0,80 0,89	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4	0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,4 4,9 5,4 5,8	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132, 154,2 204,1 232,8 264,2 298,6 336,0 376,6
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,40	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0 22,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6 1,7 1,9 2,0 2,1 2,2 2,3 2,4 2,6	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43 44 45 45 46 46 47 47 48	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9 13,6 14,2 14,8 15,4 16,0 16,6 17,2	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2 217,4 241,6 266,8 293,1 320,3 348,5 377,6	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,63 0,72 0,80 0,89 0,98	10,0 13,5 16,0 18,0 19,6 21,0 22,3 23,4 24,4 25,3 26,2	V2[m 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,4 4,9 5,4	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132, 178, 204, 232,8 264,2 298,6 336,0 376,6 420,6
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40 4,60	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 22,0 23,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6 1,7 1,9 2,0 2,1 2,2 2,3 2,4 2,6 2,7	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43 44 45 46 46 47 47 48 48	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9 13,6 14,2 14,8 15,4 16,0 16,6 17,2 17,7	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2 217,4 241,6 266,8 293,1 320,3 348,5 377,6 407,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72 0,80 0,89 0,98 1,07 1,16 1,25	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4 25,3 26,2 27,0 27,8 28,5	V2[m 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,4 4,9 5,4 5,8 6,3	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2 7, 14, 22, 32, 43, 54, 66, 78, 95,, 113, 132, 154,2 204,1 232,8 264,2 298,6 336,0 376,6 420,6 468,1
0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40 4,60 4,80	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0 22,0	C1 5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6 8,6	R1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 1,0 1,0 1,2 1,3 1,4 1,5 1,6 1,7 1,9 2,0 2,1 2,2 2,3 2,4 2,6	K1 22 27 30 33 34 36 37 38 38 39 40 41 42 43 44 45 45 46 46 47 47 48	V1[m/s 2,1 3,6 4,7 5,7 6,5 7,2 7,8 8,3 8,8 9,5 10,2 10,9 11,6 12,3 12,9 13,6 14,2 14,8 15,4 16,0 16,6 17,2	Q1 [mc 2,1 7,1 14,2 22,7 32,4 43,0 54,4 66,4 78,9 95,1 112,6 131,3 151,1 172,1 194,2 217,4 241,6 266,8 293,1 320,3 348,5 377,6	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,09 0,18 0,27 0,36 0,45 0,54 0,63 0,72 0,80 0,89 0,98 1,07 1,16	10,0 13,5 16,0 19,6 21,0 22,3 23,4 24,4 25,3 26,2 27,0 27,8	V2[m 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,4 4,9 5,4 5,8 6,3 6,7	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 2 7, 14, 22, 32, 43, 54, 66, 78, 95, 113, 132, 178, 204, 232,8 264,2 298,6 336,0 376,6 420,6

Tab	0. 41		Sca	la di N	Noto L	Iniforme	9						
	-								1	Coe	ff di s	cabrezz	a
		Pend	.canale	В	B1	Н	L1	L2	H1	N1	N2	Tab	
SEZIO	NE	2	0,08	2,00	3,00	1,80	7,00	7,00	1,50	0 1,75	2,3	41	
								1		1,,,,	1 2,0	+	
	-												
													8
6.00	,							,					
6,00	7					1					_		
5,00) -							-					
-													
4,00)	-											
-													
3,00) 📙												
						9 8 .	1 (4)						
2,00	<u>.</u>												
2,00	1							-			+		
	1/												-
1,00	1	-		+				_					
-	Y										-		
0,00	P												
, -,	-						****					1	
		100	0 2	00.0	300 (100	0 5	00.0	000	^ -			
	0,0	100,	,0 2	00,0	300,0	0 400,	,0 5	00,0	600	,0 7	00,0	800,0	900,0
		100,	0 2	00,0	300,0	0 400,	,0 5	00,0	600	,0 70	00,0	800,0	900,0
		100,	0 2	00,0	300,0	400,	0 5	00,0	600	,0 7	00,0	800,0	900,0
			0 2 R1								 	,	
m] 0,20	0,0		R1	K1	V1[m/	Q1 [mc	A2	C2	600 R2	,0 70 K2	 	Q2 [mc	Qtot [mc/s]
m] 0,20 0,40	0,0 A1	C1			V1[m/s	Q1 [mc	A2 0	C2 0			 	Q2 [mc	Qtot [mc/s]
m] 0,20 0,40 0,60	0,0 A1 0,4 0,9 1,3	C1 2,4	R1 0,2	K1	V1[m/: 1,9 3,2	Q1 [mc 0,8	A2 0 0	C2 0			 	Q2 [mc.	Qtot [mc/s]
0,20 0,40 0,60 0,80	0,0 A1 0,4 0,9 1,3 1,8	C1 2,4 2,8 3,2 3,7	R1 0,2 0,3 0,4 0,5	K1 17 21	V1[m/s	Q1 [mc	A2 0 0	C2 0			 	Q2 [mc, 0 0 0 0	Qtot [mc/s]
m] 0,20 0,40 0,60 0,80 1,00	0,0 A1 0,4 0,9 1,3 1,8 2,3	C1 2,4 2,8 3,2 3,7 4,1	R1 0,2 0,3 0,4 0,5 0,6	K1 17 21 23 25 26	V1[m/s 1,9 3,2 4,2	Q1 [mc 0,8 2,7 5,5	A2 0 0 0	C2 0 0			V2[m	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s]
m] 0,20 0,40 0,60 0,80 1,00 1,20	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8	C1 2,4 2,8 3,2 3,7 4,1 4,5	R1 0,2 0,3 0,4 0,5 0,6	K1 17 21 23 25 26 27	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1	Q1 [mc 0,8 2,7 5,5 8,8	A2 0 0 0 0	C2 0 0 0			V2[m	Q2 [mc, 0 0 0 0	Qtot [mc/s]
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9	R1 0,2 0,3 0,4 0,5 0,6 0,6	K1 17 21 23 25 26 27 28	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2	A2 0 0 0 0 0 0	C2 0 0 0 0 0 0			V2[m	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s]
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7	K1 17 21 23 25 26 27 28 29	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6	A2 0 0 0 0 0 0 0	C2 0 0 0 0 0 0			V2[m	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s]
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7	K1 17 21 23 25 26 27 28 29 29	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0 7,4	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6	A2 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0	R2	K2	V2[m	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s]
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,7 0,8 0,9	K1 17 21 23 25 26 27 28 29 29	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1	A2 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0	R2	K2	V2[m	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1. 1. 2. 2. 3. 4.
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0	K1 17 21 23 25 26 27 28 29 29 31 32	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5	A2 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20	10,4 14,0	V2[m	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,3	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5:
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1	K1 17 21 23 25 26 27 28 29 29 31 32 33	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6	A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29	10,4 14,0 16,6	V2[m	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5:2 6:
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0	K1 17 21 23 25 26 27 28 29 29 31 32	V1[m/s 1,9 3,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39	10,4 14,0 16,6 18,6	0,9 1,8 2,5 3,3	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1. 1. 2. 2. 3. 4. 5. 6. 8.
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2	K1 17 21 23 25 26 27 28 29 29 31 32 33 34	V1[m/s 1,9 3,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5 11,2	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7,7 7,6 9,5	0,10 0,20 0,29 0,39 0,49	10,4 14,0 16,6 18,6 20,3	0,9 1,8 2,5 3,3 4,0	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1. 1. 2. 2. 3. 4. 5. 6. 8. 1. 10.3
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1 8,7	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2 1,3	K1 17 21 23 25 26 27 28 29 29 31 32 33 34 34	V1[m/s 1,9 3,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3 96,7	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39 0,49 0,59	10,4 14,0 16,6 18,6 20,3 21,7	0,9 1,8 2,5 3,3 4,0 4,7	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5: 6: 8: 10: 128
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1 8,7 9,3	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6	K1 17 21 23 25 26 27 28 29 29 31 32 33 34 34 35 36 37	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5 11,2 11,9	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39 0,49 0,59 0,68	10,4 14,0 16,6 18,6 20,3 21,7 23,0	0,9 1,8 2,5 3,3 4,0 4,7 5,4	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5: 6: 8: 10: 12: 15: 15: 15: 15: 15: 16: 17: 18: 18: 18: 18: 18: 18: 18: 18: 18: 18
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1 8,7 9,3 9,9	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7	K1 17 21 23 25 26 27 28 29 31 32 33 34 34 35 36 37 37	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5 11,2 11,9 12,6	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3 96,7 109,9	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39 0,49 0,59	10,4 14,0 16,6 18,6 20,3 21,7 23,0 24,2	V2[m 0,9 1,8 2,5 3,3 4,0 4,7 5,4 6,0	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5: 6: 8: 10: 128 15:9
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1 8,7 9,3 9,9 10,5	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8	K1 17 21 23 25 26 27 28 29 31 32 33 34 34 34 35 36 37 37 38	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5 11,2 11,9 12,6 13,2 13,9 14,6	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3 96,7 109,9 123,8 138,3 153,6	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39 0,49 0,59 0,68 0,78	10,4 14,0 16,6 18,6 20,3 21,7 23,0	0,9 1,8 2,5 3,3 4,0 4,7 5,4 6,0 6,7	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1. 1. 2. 2. 3. 4. 5. 6. 8. 10.3 12.8 15.9 19.6 23.9
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1 8,7 9,3 9,9 10,5 11,1	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9	K1 17 21 23 25 26 27 28 29 31 32 33 34 34 35 36 37 37 38 39	V1[m/s 1,9 3,2 4,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5 11,2 11,9 12,6 13,2 13,9 14,6 15,2	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3 96,7 109,9 123,8 138,3 153,6 169,5	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39 0,49 0,59 0,68 0,78 0,88	10,4 14,0 16,6 18,6 20,3 21,7 23,0 24,2 25,2	V2[m 0,9 1,8 2,5 3,3 4,0 4,7 5,4 6,0	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5: 6: 8: 10: 1: 19: 2: 29: 29: 29: 20: 20: 20: 20: 20: 20: 20: 20: 20: 20
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1 8,7 9,3 9,9 10,5 11,1 11,7	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0	K1 17 21 23 25 26 27 28 29 31 32 33 34 34 35 36 37 37 38 39 39	V1[m/s 1,9 3,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5 11,2 11,9 12,6 13,2 13,9 14,6 15,2 15,8	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3 96,7 109,9 123,8 138,3 153,6 169,5 186,0	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39 0,49 0,59 0,68 0,78 0,88 0,98	10,4 14,0 16,6 18,6 20,3 21,7 23,0 24,2 25,2 26,2	0,9 1,8 2,5 3,3 4,0 4,7 5,4 6,0 6,7 7,3	Q2 [mc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5: 6: 8: 10: 3: 12: 9: 9: 9: 9: 9: 3: 4: 3: 4: 5: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9:
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1 8,7 9,3 9,9 10,5 11,1 11,7 12,3	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,2	K1 17 21 23 25 26 27 28 29 31 32 33 34 35 36 37 37 38 39 39 40	V1[m/s 1,9 3,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5 11,2 11,9 12,6 13,2 13,9 14,6 15,2 15,8 16,5	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3 96,7 109,9 123,8 138,3 153,6 169,5 186,0 203,2	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39 0,49 0,59 0,68 0,78 0,88 0,98 1,08	10,4 14,0 16,6 18,6 20,3 21,7 23,0 24,2 25,2 26,2 27,0	0,9 1,8 2,5 3,3 4,0 4,7 5,4 6,0 6,7 7,3 7,9	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5: 6: 8: 10: 1: 10: 2: 2: 3: 4: 4: 5: 6: 8: 4: 4: 5: 6: 8: 4: 4: 5: 6: 8: 4: 4: 5: 6: 8: 4: 4: 4: 5: 6: 8: 4: 4: 5: 6: 8: 4: 4: 5: 6: 8: 4: 4: 5: 6: 8: 4: 4: 5: 6: 8: 4: 4: 5: 6: 8: 4: 6: 8: 4: 6: 8: 4: 6: 8: 4: 6: 8: 4: 6: 8: 4: 6: 8: 4: 6: 8: 4: 6: 8: 8: 4: 6: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:
m] 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20	0,0 A1 0,4 0,9 1,3 1,8 2,3 2,8 3,4 4,0 4,5 5,1 5,7 6,3 6,9 7,5 8,1 8,7 9,3 9,9 10,5 11,1 11,7	C1 2,4 2,8 3,2 3,7 4,1 4,5 4,9 5,3 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7 5,7	R1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0	K1 17 21 23 25 26 27 28 29 31 32 33 34 34 35 36 37 37 38 39 39	V1[m/s 1,9 3,2 4,9 5,6 6,1 6,6 7,0 7,4 8,2 9,0 9,7 10,5 11,2 11,9 12,6 13,2 13,9 14,6 15,2 15,8	Q1 [mc 0,8 2,7 5,5 8,8 12,8 17,2 22,2 27,6 33,6 42,1 51,5 61,6 72,6 84,3 96,7 109,9 123,8 138,3 153,6 169,5 186,0	A2 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 0 0 0 0 0 0 0 0 0 0 0 0 0	0,10 0,20 0,29 0,39 0,49 0,59 0,68 0,78 0,88 0,98 1,08 1,17	10,4 14,0 16,6 18,6 20,3 21,7 23,0 24,2 25,2 26,2 27,0 27,9	0,9 1,8 2,5 3,3 4,0 4,7 5,4 6,0 6,7 7,3 7,9 8,5	Q2 [mc, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Qtot [mc/s] 1: 1: 2: 2: 3: 4: 5: 6: 8: 10: 3: 12: 9: 9: 9: 9: 9: 3: 4: 3: 4: 5: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9: 9:

X

;

. Tab	. 42	Π	Scal	a di N	loto Ui	niforme		T			Γ		
			 	T	T		+		 	Coef	fdisc	abrezza	
		Pend.o	canale	В	B1	Н	L1	L2	H1	N1	N2	Tab	
SEZIO	NE	2a	0,09	8,00	20,00	0,10						+	
		24	0,09	0,00	20,00	0,10	10,00	10,00	1,00	0,75	2,3	42	
										 			
						3 - 1/2/2	77,54	وسمي داد		P ven	- 1 7		et
6,00		•						The second secon					
1.0								:			-		
4,00)	1											
3,00									-				
2,00) 			1				!					
1,00										15			
0,00								Annual Control of Cont					
	0,0	1000	,0 20	0,00	3000,	0 4000	,0 500	0,00	6000,	0 700	0,0	8000,0	9000,0
h [m]	A1	C1	R1	K1	V1[m/s	Q1 [mc.	A2	C2	R2	K2	\/2[m	O2 (mc	Qtot [mc/s]
0,20	2,8	20,0	0,1	29	3,3	9,1	0,1	2,0	0,05	7,7	0,5	0,1	9,2
0,40		20,0	0,3	38		45,3		6,0	0,15	12,5	1,5		46,6
0,60	-	-	0,5	43	9,5	102,5	2,5	10,0	0,25	15,5	2,3	5,8	108,3
0,80	+		0,7	46	12,0	177,5	4,9	14,1	0,35	17,8	3,1	15,4	192,9
1,00		20,0	0,9	49	14,3	268,2	8,1	18,1	0,45	19,6	3,9	31,9	300,1
1,20		20,0	1,1	51	16,4	373,2	12,1	22,1	0,55	21,2	4,7	56,9	430,0
1,40		20,0	1,3	53	18,3	491,3	16,9	26,1	0,65	22,5	5,4	91,9	583,2
1,60		20,0	1,5	54	20,2	621,8	22,5	30,1	0,75	23,8	6,2	138,5	760,3
1,80	-	20,0	1,7	55	21,9	763,8	28,9	34,2	0,85	24,9	6,9	198,1	961,9
2,00		20,0	1,9	57	23,6	916,8	36,1	38,2	0,95	25,8	7,5	272,2	1189,0
2,20	-	20,0	2,1	58	25,2	1080,2	44,1	42,2	1,04	26,8	8,2	362,0	1442,2
2,40	-	20,0	2,3	58	26,8	1253,7	52,9	46,2	1,14	27,6	8,9	468,9	1722,6
2,60	-	20,0	2,5	59	28,3	1436,8	62,5	50,2	1,24	28,4	9,5	594,1	2030,9
2,80 3,00		20,0	2,7	60	29,7	1629,2	72,9	54,3	1,34	29,2	10,1	738,9	2368,1
3,00	58,8	20,0	2,9	61	31,1	1830,6	84,1	58,3	1,44	29,8	10,8	904,5	2735,1
3,40	62,8	20,0	3,1	61	32,5	2040,6	96,1	62,3	1,54	30,5	11,4	1092,2	3132,8
3,60	-	20,0	3,3	62	33,8	2259,1	108,9	66,3	1,64	31,1	12,0	1303,0	3562,1
3,80	70,8 74,8	20,0	3,5	62	35,1	2485,7	122,5	70,3	1,74	31,7	12,6	1538,1	4023,9
4,00	78,8	20,0	3,7	63	36,4	2720,3	136,9	74,4	1,84	32,3	13,1	. 798,7	4519,0
4,00	82,8	20,0	3,9	63	37,6	2962,7	152,1	78,4	1,94	32,8	13,7	2085,8	5048,5
4,40	86,8	20,0	4,1	64	38,8	3212,7	168,1	82,4	2,04	33,3	14,3	2400,5	5613,2
4,60	90,8	20,0	4,3 4,5	64	40,0	3470,1	184,9	86,4	2,14	33,8	14,8	2743,9	6213,9
4,80	94,8	20,0	4,5	64	41,1	3734,7	202,5	90,4	2,24	34,3	15,4	3117,0	6851,7
5,00	98,8	20,0	4,7	65	42,3	4006,4	220,9	94,5	2,34	34,7	15,9	3520,8	7527,2
5,00	30,0:	20,01	4,9	65	43,4	4285,1	240,1	98,5	2,44	35,21	16,5	3956,4	8241,5

. 1

Tab	. 43	1	Sca	la di N	/loto U	niforme			1	T	T	T	
				T	T		-		+-	Coe	ff di so	cabrezza	1
		Pend.	canale	В	B1	Н	L1	L2	H1	N1	N2	Tab	1
SEZIO	NE	3	0,08	3,00	6,00	3,00	7,00	7,00	1,50	_	+		
			1	10,00	0,00	3,00	7,00	7,00	1,50	1,/5	2,3	43	-
								+	+	-	+		
							 	1	1	+	+	 	
						,							
6,00) —												
5,00) -												
4,00	1												
+,00	'											-	
3,00	/		1		1					-			
2,00	-	-/											
			İ										
1,00	1		-		į.								
0,00	1												
	0,0	4/	20.0							-			——————————————————————————————————————
	0,0	10	0,00	20	0,0	300,0	ll o	400,0	5	500,0	6	0.00	700,0
	T		F- ====					P					ļ
	-	-											1
h [m]	A1	C1	R1	K1	\/1[m/s	Q1 [mc/	142	C2	Do	1/0) (OF	001	
0,20			0,2	17	2,0	1,3	_	0	R2	K2	V2[m		Qtot [mc/s]
0,40	1,3	-	0,3	22	3,5	4,5		0				0	1,3 4,5
0,60	2,0		0,5	24	4,7	9,3		0				0	4,5
0,80	2,8	4,8	0,6	26	5,6	15,5		0				0	9,3 15,5
1,00		-	0,7	28	6,5	22,9		0				0	22,9
1,20	4,4		0,8	29	7,2	31,5	0	0				0	31,5
1,40	5,2	6,1	0,9	30	7,9	41,2		0				0	41,2
1,60 1,80	6,2	6,6	0,9	31	8,5	52,1		0				0	52,1
2,00	7,1 8,1	7,0 7,5	1,0	32	9,0	64,1		0				0	64,1
2,20	9,1	7,5	1,1 1,2	32	9,5	77,2		0				0	77,2
2,40	10,2	8,4	1,2	34	10,0	91,5 107,0		0				0	91,5
2,60	11,3	8,8	1,3	34	10,9	123,7		0				0	107,0
2,80	12,5	9,3	1,3	35	11,4	141,6		0				0	123,7
3,00	13,6	9,7	1,4	35	11,8	160,7		0				5	141,6 160,7
3,20	14,8	9,7	1,5	36	12,6	186,9	0,2	1,9	0,10	10,4	0,9	0,2	187,1
3,40	16,0	9,7	1,7	37	13,4	214,8	0,7	3,8	0,20	14,0	1,8	1,3	216,2
3,60	17,2	9,7	1,8	38	14,2	244,4	1,7	5,7	0,29	16,6	2,5	4,3	248,7
3,80 4,00	18,4	9,7	1,9	38	14,9	275,5	3,0	7,6	0,39	18,6	3,3	9,8	285,3
4,00	19,6 20,8	9,7	2,0	39	15,7	308,2	4,7	9,5	0,49	20,3	4,0	18,7	326,9
4,40	22,0	9,7	2,1	40	16,4	342,4	6,7	11,5	0,59	21,7	4,7	31,6	374,0
4,60	23,2	9,7	2,4	41	17,2 17,9	378,1 415,2	9,1	13,4	0,68	23,0	5,4	49,3	427,3
4,80	24,4	9,7	2,5	41	18,6	453,8	11,9 15,1	15,3 17,2	0,78	24.2	6,0	72,2	487,4
5,00	25,6	9,7	2,6	42	19,3	493,7	18,7	19,1	0,88	25,2 26,2	6,7	101,1	554,9
					, . ;	100,7	10,71	13,11	0,90	40,21	7,3!	136,6	630,3

CAPITOLO II STUDIO E VALUTAZIONI SU BASE CARTOGRAFICA A SCALA 1:2000

1.0 Criteri e metodi per lo studio di dettaglio

La necessità di fornire un quadro dei luoghi verosimile, ma soprattutto in grado di consentire valutazioni sulle scelte di pianificazione, conformemente a quanto previsto dalle normative e circolari vigenti, ha orientato lo scrivente a prendere in esame porzioni del territorio in ragione delle rispettive caratteristiche e in funzione dell'utilizzo urbanistico in atto presente.

E' conseguente che le informazioni caratteristiche sui terreni presenti hanno tenuto conto delle omogenee condizioni orografiche e ambientali nonchè della densità di urbanizzazione presente all'interno.

Per quanto riguarda la metodologia dello studio di dettaglio è stata articolata nell'acquisizione ed esecuzione di accertamenti geognostici finalizzati alla caratterizzazione dei luoghi, nella individuazione e delimitazione di elementi di pericolosità geologica quali dissesti o fenomeni potenziali di esondazione nonchè nella caratterizzazione della risposta sismica locale nelle aree investigate.

L'insieme di informazioni così acquisite ha consentito di formulare alcune valutazioni ed interpretazioni sul territorio in esame, riportate nei paragrafi successivi e rappresentate negli appositi elaborati grafici tematici.

A

2.0 Accertamenti geognostici

Al fine di caratterizzare il comprensorio dal punto di vista geologico, geomorfologico e litotecnico, sono stati acquisiti informazioni e dati riguardo la stratigrafia e le caratteristiche dei terreni presenti, nonché sulla presenza nel territorio di fenomenologie di vario genere legate al dissesto idrogeologico.

Questi elementi sono stati desunti sia attraverso l'acquisizione di dati relativi ad indagini svolte a diverso titolo nel territorio integrate con indagini conformi alla normativa vigente, che attraverso notizie storiche di fenomeni verificatisi in passato e mediante rilievi di superficie.

Tale criterio ha consentito di individuare una serie di frane di crollo che interessano il territorio comunale. Sono segnate anche porzioni di territorio interessate da esondazioni.

In particolare si è cercato di individuare la presenza di processi erosivi attivi e di fenomeni franosi in atto ad essi collegati, la presenza di indicatori geomorfologici che possano costituire segni precursori di dissesti e più in generale di caratteristiche fisiche del territorio che costituiscono fattori predisponenti delle frane, quali ad esempio la litologia, la morfologia dei versanti, con particolare riguardo alla acclività dei pendii, alla presenza di coperture detritiche e/o rimaneggiate ecc.

Lo studio condotto ha evidenziato comunque la necessità di integrare le suddette informazioni con ulteriori verifiche che sono state localizzate in corrispondenza di orizzonti significativi all'interno delle aree di maggiore interesse.

Per la determinazione della successione litostratigrafica del sottosuolo e per la caratterizzazione fisico-meccanica dei terreni presenti si è proceduto all'esecuzione di sondaggi meccanici a rotazione e carotaggio continuo, con prelievo di campioni indisturbati, ed alla installazione di piezometri a tubo aperto nei fori di sondaggio.

E' stata effettuata anche una campagna di indagini geofisiche nell'ambito della quale sono state eseguite prove sismiche in foro di tipo down hole e sondaggi sismici di superficie.

Si é proceduto inoltre all'esecuzione di analisi e prove geotecniche di laboratorio sui campioni prelevati nel corso dei sondaggi geognostici.

La programmazione della campagna di indagini ha tenuto conto della necessità di acquisire elementi qualitativi e quantitativi indispensabili per lo studio in oggetto, prioritariamente nelle aree più densamente urbanizzate o sulle quali è prevista la realizzazione di opere rilevanti in relazione alla pianificazione urbanistica.

Altresì, hanno determinato le scelte del programma delle indagini, le indicazioni derivanti dai rilievi di superficie sull'assetto dei terreni al fine di poter caratterizare situazioni litostratigrafiche "tipo" estendibili a zone omogenee per caratteristiche litostratigrafiche e geotecniche. Ciò anche in relazione alla necessità di contenere per quanto possibile le spese per indagini geognostiche.

Quanto sopra anche ottimizzando le indagini geognostiche già eseguite da altri professionisti, per conto dell'Amministrazione, nell'ambito di diversi progetti, e che sono state acquisite consegnate allo scrivente ed utilizzate come di seguito descritto.

2.1 Sondaggi meccanici a rotazione ed a carotaggio continuo

Come già accennato, si tratta di n° 5 sondaggi meccanici a rotazione e a carotaggio continuo effettuati con sonda Nenzi modello Gelma 2, utilizzando un carotiere semplice con diametro esterno di 101 mm mediante il quale sono state prelevate carote di diametro pari a circa 83 mm. Le carote estratte, sono state riposte in apposite cassette e opportunamente catalogate.

L'ubicazione dei sondaggi, riportata nella Tav. B.1.1/5 (Carta geologica scala 1:2.000) con la sigla "S". ha tenuto conto delle esigenze dello studio compatibilmente alla accessibilità dei luoghi che in qualche occasione non ha consentito l'esecuzione degli accertamenti nei luoghi prescelti.

Le indagini hanno permesso di ricostruire la successione dei terreni presenti nel sottosuolo investigato, il rinvenimento di eventuali falde idriche, il prelievo di campioni indisturbati, l'installazione di tubi idonei all'esecuzione di prove sismiche in foro e tubi piezometrici.

Le perforazioni sono state spinte generalmente a una profondità variabili tra 10 m e 15 m dal piano campagna. In totale sono stati eseguiti 60,5 ml di perforazione. Le colonne stratigrafiche dei sondaggi sono riportate integralmente nell'All.1.

Nel corso dei sondaggi sono stati prelevati n. 5 campioni indisturbati con campionatore semplice del tipo "Shelby" di diametro pari a 83 mm. I campioni prelevati sono stati subito opportunamente sigillati, contrassegnati con la direzione di avanzamento della perforazione, catalogati ed inviati al laboratorio per le analisi e prove geotecniche.

Come già accennato, tutti i sondaggi sono stati effettuati nell'area del centro abitato o nelle sue immediate vicinanze, ad eccezione del sondaggio S6, realizzato vicino al cimitero, del sondaggio S3, eseguito fra il villaggio delle more ed i capannoni nella zona industriale.

I sondaggi effettuati hanno intercettato gli stessi orizzonti litologici nei livelli superficiali, seppure con spessori diversi. Nei livelli sottostanti i sondaggi S1 ed S3 hanno intercettato il complesso carbonatico, i sondaggi S2 ed S5 hanno intercettato il Flysch Numidico ed il sondaggio S4 ha intercettato le Calcareniti Quaternarie.

Tutti i sondaggi eseguiti nell'area del centro abitato hanno evidenziato una situazione stratigrafica della coltre di natura eluviale e colluviale formata prevalentemente da argille e argille sabbiose di colore variabile dal marrone scuro al marrone giallastro, con struttura indifferenziata, molto alterate e plastiche, con inclusi elementi lapidei a spigoli vivi di natura prevalentemente calcarea e dimensioni

ai oni eterogenee. Tale coltre è presente con continuità in tutta l'area del centro abitato con spessori variabili da 0,40 m a 3,0 m, così come emerso dai sondaggi realizzati.

In tabella A sono riportati i dati riassuntivi dei sondaggi eseguiti.

Spessore Calcarenite in m				10.6	0/01
Spessore Flysch Numidico in n		9.7			13,5
Spessore Complesso Carbonatico in	10		7,7		
Spessore coltre superficiale in m	3	1,8	2,3	0,4	1,5
Profondità del sondaggio in m	13	11,5	10	11	15
Sondaggio	S1	S2	S3	S4	S5

Tab A. - Quadro riepilogativo degli spessori dei litotipi per singolo sondaggio

2.2 Prove geotecniche di laboratorio

Nel corso dello studio in oggetto è stata effettuata una serie di analisi e prove geotecniche di laboratorio sui campioni prelevati nel corso dei sondaggi i cui risultati sono riportati in dettaglio nell'All.2.

Tutti i 5 campioni prelevati sono stati sottoposti ad analisi di laboratorio. Sono state effettuate analisi e prove finalizzate all'accertamento delle caratteristiche fisiche, granulometriche, di consistenza e le caratteristiche meccaniche relative alla prova di taglio diretto consolidata drenata, alla prova di consolidazione edometrica e prova di compressione non continata.

In particolare, su n° 4 campioni analizzati sono state determinate le caratteristiche fisiche e granulometriche e di consistenza; su n. 3 campioni sono state eseguite le prove di taglio diretto di tipo CD; su n° 1 campione è stata eseguita la prove di schiacciamento DL e su n° 1 campione la prove di compressione non confinata ELL.

In tabella B sono riportate le tipologie di analisi e prove di laboratorio effettuate sui campioni utilizzati.

A

	S5C2	9901	C C C	8202	S2C1	S1C1		n° W		Campione Caratteristiche fisiche	
								Wn		tteristic	
	×	×	+	+	× ×			20 20		he fisic	
	×	×	×	>	<					Caratteristiche granulometriche)
	×	×	×	>	<			<u>×</u>		Caratte	
	×	×	×	×				\bigvee_{p}		Caratteristiche di consistenza	
1	×	×	×	×				I_p		consis	
	×	×	×	×				I_{c}		tenza	
	×		×	×			<u>.</u>	Prova di	,	င္ပ	
_	×		×	×		1	t.	Prova di taglio diretto		Caratteristiche meccaniche	
				×				ELL		e meccanic	
					×			PL		he	

Tab B. - Riepilogo delle prove di laboratorio eseguite

A differenza dei due precedenti, con il dh 3 non si sono raggiunte alte velocità delle Vs a causa della presenza di un deposito di natura calcarenitica poco o scarsamente compatto.

Per quanto riguarda l'esecuzione dei sondaggi sismici di superficie i dati ottenuti hanno permesso di diagnosticare la situazione stratigrafica nell'immediato sottosuolo per una profondità massima di 15m circa.

Di seguito si riportano i risultati delle suddette indagini. Gli elaborati completi delle indagini sismiche sono riportati integralmente nell'All. 1.

Le basi sismiche bs1, bs2 e bs3, sono stati realizzati in prossimità del sondaggio meccanico S5 ed hanno confermato la presenza del flysch numidico (facies argillitica a struttura scagliettata, molto consistente) a circa 8.00m dal p.c.

Il 1° rifrattore è contraddistinto da bassi valori di velocità delle onde sismiche primarie (VOSP), comprese tra 0,59 e 0,75 (km/s) per una profondità massima di 1,5m dal p.c.

Questo deposito superficiale è costituito essenzialmente da detrito misto a terreno di copertura, privo di consistenza. Il 2° rifrattore è pressoché concorde nei 3 stendimenti e si assesta a valori di 1,22 km/s per uno spessore variabile da 9.00 dal p.c. in bs1 ai 6.00 m in bs2 e in bs3. Questo deposito può essere assimilato al terreno argilloso sabbioso dalla buona consistenza alterato e rimaneggiato. Il 3° rifrattore con VOSP dell'ordine dei 3,00km/s è assimilabile al bedrock, rappresentato dalle argilliti silicee a struttura scagliettata del flysch numidico.

La base sismica bs4 realizzata nei pressi del cimitero, ha mostrato una geometria a tre strati.

Il 1° rifrattore con spessore massimo di 1 m, corrisponde al terreno inconsistente di copertura con VOSP di 0,38km/s, il 2° rifrattore con andamento leggermente immergente verso destra rispetto alla direzione dello stendimento si rileva da 4 a 4,30m dal p.c. ed ha VOSP di 1,12 km/s, rappresentante la porzione alterata e rimaneggiata delle sottostanti argilliti silicee costituenti il bedrock con VOSP di 2,7Km/s.

La base sismica bs5 ubicata in prossimità del sondaggio meccanico S2 e del downhole DH2, ha confermato che il bedrock è costituito dalle argilliti flyscioidi con VOSP di circa 3.00km/s ad una profondità di circa 7.00m dal p.c.

Questo valore così elevato di velocità deve essere attribuito all'elevata consistenza del deposito confermato dal carotaggio del sondaggio meccanico S2.

Anche in questo caso il bedrock risulta ricoperto da circa 5,5m di deposito alterato con VOSP di 1,41km/s costituito essenzialmente da argille sabbiose

X

mediamente consistenti e da 1,5 m di terreno di copertura con VOSP di 0,46km/s e scarsa o nulla consistenza.

Anche la bs6 ha dato la stessa situazione sismostratigrafica con 2 rifrattori posti rispettivamente: il 1° con VOSP di 0,62 km/s a 1,90m dal p.c., il 2° immergente verso Est con VOSP di 1,36 km/s da 5,70 a 6,40 m dal p.c. che copre il bedrock argillitico che raggiunge VOSP di 3km/s.

Riassumendo le basi sismiche dal bs1 al bs6 hanno restituito una certa uniformità nei risultati, con un bedrock univocamente identificato a varia profondità.

La bs7 ubicata nel centro abitato ha mostrato una geometria a tre strati: il 1° rifrattore con VOSP di 0,50 km/s, rappresentato dai terreni di copertura; il 2° fino ad una profondità massima di 3,20m dal p.c. con VOSP di 1,07km/s, corrispondente alla presenza di terreno alterato dalle scarse proprietà fisico meccaniche, mentre il 3° strato con spessore maggiore della profondità di investigazione con VOSP di circa 2,12km/s è assimilabile alla presenza del Complesso Carbonatico triassico – oligocenico della piattaforma panormide.

La bs8, realizzata in prossimità di una villetta comunale nei pressi di via Kennedy, ha mostrato una geometria a due strati.

Il 1° di copertura con valori di velocità di 0,50km/s, mentre il 2° sismostrato con spessore maggiore della profondità d'investigazione con VOSP di circa 2 km/s è costituito dalle calcareniti pleistoceniche della piana costiera.

La bs9 ubicata in prossimità della linea di costa ha invece restituito una situazione sismostratigrafica a 3 strati con il 1° ad una profondità di 1,00 m dal p.c. costituisce una porzione di riporto, il 2 strato che va da 3 a 4,50m dal p.c. immergente verso NNW con VOSP di 0,90 km/s è costituito da terreno di copertura e di alterazione del sottostante deposito carbonatico che raggiunge una VOSP di circa 2,20km/s.

I sondaggi sismici dal bs10 al bs12, sono stati realizzati al confine NW del territorio comunale, in destra idraulica del Torrente Ciachea,lungo un allineamento pressoché parallelo all'Autostrada PA-TP.

La prospezione ha restituito una situazione sismostratigrafica comune ai 3 stendimenti:

il 1° rifrattore con andamento sub parallelo al p.c. ha dato una VOSP = 0,33km/s, questi bassi valori indicano la presenza di suolo vegetale misto a terreno di copertura dalle scarse proprietà fisico – meccaniche per uno spessore massimo di 1 – 1,5m, il secondo rifrattore caratterizzato da VOSP intorno ai 500m/s è assimilabile alle alluvioni debolmente cementate, caratterizzanti la zona costiera ed in piccola parte l'area occupata dal Torrente Ciachea per uno spessore variabile da 1 – 1,5m a 3,5m), il terzo/

rifrattore comune ai 3 stendimenti identifica il substrato calcarenitico (VOSP = 1700m/s circa).

La base sismica bs13, ubicata lungo lo stesso allineamento precedente, grazie alla geometria di acquisizione scelta (stendimento di 70m compreso l'offset), ha permesso di indagare a maggiore profondità (circa 20m), ed ha mostrato una geometria anch'essa a tre strati.

Il 1° rifrattore con VOSP di 600m/s corrisponde al terreno di copertura per uno spessore massimo di 1,5m (suolo, areato superficiale misto a inclusi calcarenitici della sottostante formazione); il 2° con VOSP di 1280m/s è assimilabile alle calcareniti pleistoceniche, per uno spessore anche di 10m ed andamento sub orizzontale, poggianti in discordanza stratigrafica ai sottostanti calcari del Complesso Carbonatico con spessore maggiore della profondità d'investigazione.

L'insieme di informazioni e dati raccolti nel corso dello studio hanno consentito di individuare la litologia e l'assetto stratigrafico dei terreni presenti nel territorio in esame e di redigere la carta geologica (cfr TAV. B.1.1/5 – Scala geologica scala 1:2.000) e le sezioni geologiche schematiche alla scala 1:1000 (cfr. TAV.C).

La scelta sulle possibili direttrici lungo le quali ricostruire le sezioni più significative, è stata quella di verificare e rappresentare per quanto possibile, lo stato di assetto dei terreni rappresentativo delle diverse situazioni tipo presenti nel territorio considerato. Le tracce delle sezioni geologiche sono riportate nelle TAVV. B.1.1/5.

La sezione A-A' è stata tracciata intercettando i boccafori dei sondaggi meccanici Sa27, Sa28 ed Sa29 e si sviluppa per circa 178 m grossomodo con direzione SE-NO; essa mostra il contatto stratigrafico fra i calcari mesozoici (CA) e le calcareniti quaternarie (CQ) e mette bene in evidenza l'aumento di spessore del deposito pleistocenico man mano che si procede verso mare.

La sezione B-B' impegna le falde di Costa Perniciaro e con decorso SE-NO si sviluppa per circa 415 m, intercettando le basi sismiche BS7 e T; essa mostra il contatto tra il detrito di falda e i calcari mesozoici che risultano comunque ricoperti da una coltre superficiale di spessore intorno ai 3 m. La base sismica T ha evidenziato che, al di sotto di una copertura pedogenetica di poco inferiore ai due metri, la presenza di detrito di falda senza potere intercettare il basamento carbonatico.

La sezione C-C' intercetta il boccaforo del sondaggio S2 e la base sismica BS5 e si sviluppa per circa 301 m con decorso SE-NO evidenziando il contatto tra il complesso carbonatico mesozoico e il sovrastante Flysch Numidico. Il contatto in superficie è nascosto dalla presenza di una coltre superficiale di alcuni merti di spessore.

La sezione D-D' si sviluppa per circa 212 m in direzione E-O e passa per i boccafori dei sondaggi meccanici Sa2 ed Sa1; essa mostra al di sotto di una coltre superficiale di spessore variabile tra un metro e 3,0 m le argille del Flysch Numidico in contatto con i sottostanti calcari mesozoici.

La sezione E-E' si sviluppa per circa 284 m con direzione S-N ed intercetta il boccaforo del sondaggio Sa3 e la base sismica H; essa evidenzia il contatto trasgressivo delle calcareniti quaternarie sulle argille del Flysch Numidico, mascherato dalla presenza di una coltre superficiale di spessore variabile fra uno e tre metri.

Le suddette rappresentazioni evidenziano come per i depositi superficiali si determini la necessità, in funzione dell'utilizzo, di eseguire opportune verifiche

3.3 Aspetti litotecnici

Gli elementi emersi dallo studio geotecnico hanno consentito di ottenere per le finalità del presente studio un quadro esauriente delle proprietà fisico-meccaniche dei terreni presenti nelle aree di interesse urbanistico.

E' stato possibile, dunque, procedere alla caratterizzazione geotecnica dei terreni, che unitamente all'esame delle carote prelevate nel corso dei sondaggi ha permesso di suddividerli in livelli omogenei dal punto di vista geologico e geotecnico.

Di seguito si riportano sinteticamente per i diversi orizzonti individuati le principali caratteristiche geotecniche, rimandando all'All.1 per un più approfondito esame.

Lo studio effettuato ha permesso di distinguere diversi orizzonti geotecnici presenti nell'area su cui insiste il centro abitato di Capaci.

La formazione di base è rappresentata dal Flisch Numidico, dai calcari Mesozoici e dalle Calcareniti Quaternarie; che costituiscono il substrato su cui sorge l'urbano.

In tabella C sono riportati i principali parametri fisico-meccanici evidenziati dalle analisi e prove geotecniche eseguite sui campioni indisturbati prelevati nel corso dei sondaggi effettuati.

	Campione	e)	Caratteristiche fisiche	ristiche	fisiche	Caratte	Caratteristiche di consistenza	di consis	tenza	S	ratteri	stiche	Caratteristiche meccaniche	the
n _o	Profondità	Litotino	W			///	/4/	-	-	Prova di	Prova di taglio diretto	iretto	EIL	DL
:		_	-	NO.	S	ĺγ	ΔΛ	Тþ	1 _C	ت-	f	f,	Kg/cm ²	Kg/cm ²
	ш		%	g/cm ³	g/cm ³	%	%	%	%	Kg/cm ²	gradi	qradi		
SICI	SICI 10,00 - 10,40	Ca									_			127.44
S2C1	4,00 - 4,50	FN	17,605	2,021	2,700	44.620	17.650	966.96	1 002	0.22	21		15 207	
S2C2	8,00 - 8,50	FN	19,615	1,999	2,700	43,520	19,660	23,858	1.002	0.79	15		107/01	
S5C1	4,50 - 5,00	FN	18,055	1,982	2,710	43,510	17,390	26,123	0,975)			
S5C2	S5C2 14,50 - 15,00	FN	15,634	1,841	2,710	44,340	19,350	24,991	1,149	0.27	18			

Tab C. - Riepilogo dei principali parametri geotecnici

L'insieme degli elementi acquisiti dallo studio effettuato ha consentito di distinguere i terreni presenti secondo le caratteristiche fisico-meccaniche, individuando diverse unità litotecniche, così come indicato nella circolare A.R.T.A. n. 2222/95.

La suddetta classificazione tiene conto degli elementi emersi dai rilievi e dalle indagini in sito che hanno messo in luce aspetti geologici e strutturali inerenti la stratificazione, la presenza di sistemi di fratturazione e/o la fessurazione etc.

Per la classificazione dei terreni in unità litotecniche e la redazione della cartografia tematica (cfr. TAVV. B.3.1/5 – Carta litotecnica scala 1:2.000) si è operato conformemente alle indicazioni fornite dall'All. D della suddetta circolare distinguendo i terreni in unità litotecniche del substrato e della copertura.

Appartengono alle unità litotecniche del substrato i seguenti terreni:

Complesso carbonatico

Tale litotipo in relazione alla presenza di elementi di volume superiore al mc, è riconducibile alla unità litotecnica A1, fermo restando la possibile presenza di blocchi di minori dimensioni (A2) negli strati superficiali in relazione al maggiore grado di degrado e di frammentazione della roccia a causa dell'azione erosiva degli agenti esogeni.

Flysch Numidico

Le masse argillose che costituiscono tale tipo litologico si presentano per la maggior parte ridotte in scaglie, laminate, striate e contorte, talché risulta talora impossibile individuare qualsiasi traccia della originaria stratificazione.

Le scaglie di forma poliedrica, sono a volte minute, a volte grossolane, talora plastiche, talvolta più o meno dure e sono delimitate da superfici lucide, spesso con tracce di talco e dickite.

Ciò è dovuto alle vicissitudini tettoniche subite che hanno dato luogo ad un tale assetto fortemente caotico ed a una giacitura tettonizzata. Tali terreni sono riconducibili ad unità litotecniche a successione "caotica" afferente al gruppo B4-b4s.

Calcareniti Quaternarie

Il deposito nel suo complesso è assimilabile a successioni sabbioso – limose ad elevato grado di cementazione riferibili alle classi C2.2 e C2.3.

3.4 Aspetti geofisici

Le indagini geofisiche eseguite, unitamente agli altri elementi emersi dallo studio, hanno consentito la caratterizzazione della risposta sismica dei terreni presenti.

Le indagini geofisiche eseguite hanno avuto due obiettivi principali: uno consisteva nell'incrementare le informazioni relative ai litotipi evidenziati nei sondaggi meccanici, l'altro nel fornire criteri più oggettivi per la classificazione sismica dei terreni in ottemperanza a quanto richiesto nella menzionata Circolare A.R.T.A. n° 2222/95.

Esse, pertanto, hanno permesso l'elaborazione della carta delle zone a maggiore pericolosità sismica a scala 1:2.000 (TAVV.B.5.1/5).

Si è cercato pertanto di fornire indicazioni utili a stabilire il grado di pericolosità sismica del sito in termini di eventuali amplificazioni locali e di classificazione dei terreni di fondazione rispetto alle modifiche attese nello spettro di risposta sismica.

I siti possono infatti determinare scenari di pericolosità differenziati in funzione dell'acclività, dell'instabilità potenziale, del contatto tra litotipi meccanicamente differenti per motivi stratigrafici o tettonici.

4.0 Pericolosità sismica

Per rischio sismico si intende il danno atteso in una data area in caso di sisma. Esso è legato alla intensità sismica massima che ha la probabilità più alta di verificarsi in un dato tempo di ritorno nell'area di interesse. Tale valutazione naturalmente si basa sui dati provenienti dalla sismotettonica, dalla sismicità storica e attuale, dalla geologia regionale. Lo studio degli elementi suddetti consente in primo luogo di procedere alla messa a punto di una macrozonazione sismica che interessa il territorio su scala regionale.

Per un approccio di natura tecnico-scientifica su ambito locale per valutare il livello di rischio sismico (R) bisogna considerare la pericolosità sismica regionale (P), la vulnerabilità del sistema terreno-fondazione-struttura (V) e il grado di esposizione della comunità interessata (E) secondo la relazione:

$$R = P \times V \times E$$

L'edilizia potenzialmente più vulnerabile è concentrata nei centri storici e comprende anche il patrimonio edilizio abusivo di cui si sconoscono le tipologie costruttive e le caratteristiche di resistenza dal punto di vista sismico.

Essendo un fenomeno non prevedibile, l'unica possibile difesa dai terremoti consiste in un'attenta azione di prevenzione. Essa si esplica mediante la costruzione di nuovi edifici ed infrastrutture in grado di resistere agli eventi attesi, intervenendo sul patrimonio edilizio più antico e sui beni architettonici e monumentali per ridurne la vulnerabilità, contrastando e ponendo ordine alla realtà dell'abusivismo edilizio e realizzando mediante gli strumenti di pianificazione urbanistica generale e attuativi un riordino del territorio che tenga conto del rischio sismico. Occorre, quindi, disporre di una aggiornata classificazione del rischio sismico del territorio su scala adequata.

Un ruolo rilevante nella valutazione del fattore vulnerabilità è rivestito dalla "risposta sismica locale" ovvero la variazione del moto sismico negli strati più superficiali in funzione delle caratteristiche fisico-meccaniche dei terreni attraversati.

Infatti, è ormai noto che un terremoto può provocare danni di diversa gravità entro aree anche poco estese. Ciò è dovuto a forti incrementi dell'intensità dello scuotimento del terreno che possono provocare variazioni rilevanti anche a distanze inferiori a cento metri, in quanto le onde sismiche quando passano da un mezzo ad un altro meno rigido subiscono un rallentamento e contemporaneamente aumentano la loro ampiezza; inoltre producono diffrazioni ai bordi di bacini morfologici con generazione di onde di superficie che viaggiano verso l'interno del bacino e che provocano un ulteriore aumento delle ampiezze e delle durate nei terreni superficiali.

Appare, quindi, fondamentale in ambito di pianificazione urbanistica comunale individuare su scala territoriale ridotta zone omogenee di risposta sismica.

Lo studio che si pone come obiettivo primario la determinazione di questo importante aspetto del fattore vulnerabilità, ovvero la previsione della risposta sismica locale, è la microzonazione sismica, che può fornire allo strutturista e all'urbanista gli elementi utili per una corretta analisi della vulnerabilità del patrimonio edilizio e per un'attenta valutazione del livello di esposizione al rischio sismico della comunità e una ottimale pianificazione territoriale.

Pertanto, sono state eseguite ed acquisite indagini geofisiche, come precedentemente descritto per la verifica della risposta sismica locale.

4.1 Riferimenti normativi

Al fine di prevenire gli effetti dei terremoti con la legge n. 1684 del 25/11/62 e successive modifiche per il territorio nazionale sono state schematicamente definite tre categorie di rischio all'interno delle quali sono stati inseriti i territori comunali per i quali sono stati imposte particolari norme di ingegneria antisismica.

In particolare, in funzione del grado di sismicità (S) il territorio è stato suddiviso in zone di I, II e III categoria rispettivamente per valori di S pari a 12, 9 e 6. Tale parametro consente di calcolare il coefficiente di intensità sismica (c) mediante il quale si valuta il valore atteso di accelerazione massima in superficie.

La legislazione di riferimento inerente il rischio sismico è la legge n.64 del 2/2/74 che detta provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche. Inoltre, ai sensi dell'art.13 della suddetta legge, tutti gli strumenti urbanistici riguardanti i comuni inseriti in zone sismiche devono risultare compatibili con le condizioni geomorfologiche del territorio, previo apposito parere rilasciato dagli Uffici del Genio Civile.

Successivamente a tale legge sono stati emanati Decreti Ministeriali (D.M.LL.PP. del 24/1/86 e D.M.LL.PP. dell'11/3/88, che contengono norme tecniche da osservare per le costruzioni in zone sismiche ed altri inerenti la zonizzazione del territorio in funzione del grado di sismicità (S).

L'utilizzo di spettri di risposta di accelerazione nella progettazione ingegneristica in zone sismiche e le influenze che gli stessi spettri di risposta subiscono a causa di condizioni locali impone la conoscenza dei fattori che influenzano localmente la risposta.

La sopra citata normativa antisismica nazionale prevede il calcolo dello spettro di progetto mediante il prodotto del coefficiente di intensità sismica (c) per una forma spettrale che tiene conto delle modifiche operate dal terreno semplicemente considerando un fattore moltiplicativo dello spettro chiamato coefficiente di fondazione (ε), generalmente unitario o pari a 1.3 per terreni particolarmente compressibili.

Nella Regione Sicilia i decreti che disciplinano l'uso del territorio in funzione del grado di sismicità sono il D.M.LL.PP. del 23/9/81 e il D.M.LL.PP. del 27/7/82.

In ambito urbanistico, l'utilità di individuare aree a diverso comportamento sismico, condizione indispensabile per una corretta pianificazione che tenda a ridurre il rischio sismico, ha portato alla circolare A.R.T.A. n.2222 del 31/1/95.

Tale circolare prevede che gli studi geologici di supporto a strumenti urbanistici generali e attuativi prevedano anche uno studio delle zone a maggiore pericolosità/

sismica locale con caratterizzazione dei litotipi presenti in funzione delle diverse risposte sismiche.

Lo studio degli effetti dei terremoti avvenuti negli ultimi anni in Italia e all'estero, infatti, ha evidenziato come la tipologia e la variabilità delle caratteristiche dei depositi superficiali possa influenzare pesantemente il moto sismico atteso, talvolta in modo anche più rilevante, degli aspetti macrosismici su cui è basata la suddivisione in categorie sismiche del territorio sopra ricordata.

La circolare sopra citata pone l'attenzione sulle problematiche riguardanti il fattore "pericolosità sismica locale" ai fini della riduzione del rischio sismico.

In particolare, per l'individuazione della pericolosità sismica la suddetta norma indica alcune situazioni-tipo desunte da studi di settore a ciascuna delle quali sono riconducibili degli effetti da considerare in sede di pianificazione urbanistica.

Vengono citate, ad esempio, condizioni morfologiche particolari quali creste rocciose, cocuzzoli, dorsali e scarpate, fattori geologici quali la presenza di depositi alluvionali o detritici, elementi geomorfologici come frane attive, quiescenti o potenziali, ed anche fattori geotecnici per la valutazione di possibili fenomeni di liquefazione o densificazione dei terreni.

Inoltre fornisce anche una indicazione di classificazione dei terreni in funzione delle modifiche dello spettro di risposta sismica attese a causa delle loro proprietà geotecniche e geofisiche.

Il territorio comunale di Capaci è incluso nell'elenco delle località sismiche di Il categoria cui si attribuisce un grado di sismicità S=9 da cui si ottiene il coefficiente di intensità sismica c= 0.07 mediante la relazione:

$$c = (S - 2)/100$$

Tale coefficiente, espresso come frazione dell'accelerazione di gravità, rappresenta la massima accelerazione alla quale si vuole che i manufatti rispondano elasticamente.

Da un esame di una carta del territorio siciliano con la rappresentazione delle aree di I e II categoria, appare evidente come l'attuale classificazione non tenga conto delle effettive linee sismogenetiche. Le aree relative alle diverse classi, infatti, tengono rigidamente conto del comune di appartenenza; pertanto accade che isole amministrative di I e II categoria, siano classificate con grado sismico diverso da quello del territorio che li circonda, o che si passi da una categoria sismica all'altra bruscamente e seguendo i limiti amministrativi dei comuni.

Inoltre, le caratteristiche con cui si presenta un sisma in una data area dipendono, oltre che dalla sorgente, dalle modalità di emissione dell'energia e dalla distanza

dall'ipocentro, da fattori di risposta sismica locale che modificano la composizione spettrale del sisma.

Pertanto, non può ritenersi esaustivo il criterio della macrozonizzazione del territorio in tre classi sismiche ma, per tenere conto della vulnerabilità di aree più ristrette, occorre identificare microzone a comportamento omogeneo nei confronti della risposta sismica.

La microzonazione sismica si pone come obiettivo la delimitazione di zone a rischio sismico omogeneo sulla base di parametri geofisici quantizzabili.

Quanto sopra congiuntamente alla valutazione di altri fattori di rischio derivanti dalla presenza sul territorio di frane, pendii potenzialmente instabili, aree soggette a fenomeni di liquefazione, faglie, configurazioni morfologiche particolari ecc.

L'analisi degli aspetti geologici, geomorfologici, idrogeologici, geotecnici e geofisici consente così la rappresentazione in una apposita cartografia di sintesi dei possibili effetti di un sisma sul territorio esaminato.

4.3 Metodologie e criteri adottati per la redazione della carta delle zone a maggiore pericolosità sismica locale

Per l'identificazione e la definizione delle problematiche di pericolosità legate a fenomeni sismici si è proceduto mediante una attenta analisi dei dati, elementi ed informazioni acquisite nel corso dello studio in ambito geomorfologico, idrogeologico, litostratigrafico e geotecnico ed un confronto con le risultanze della campagna di indagini geofisiche eseguite. Si tratta, come già detto di sondaggi sismici in foro di tipo down hole (DH) e di sondaggi sismici di superficie.

DI seguito si illustrano i criteri di studio utilizzati e le modalità di restituzione e rappresentazione dei risultati conseguiti nella cartografia tematica prodotta.

Lo studio della pericolosità sismica effettuato ha seguito le indicazioni fornite dall'Assessorato Regionale del Territorio e Ambiente con la circolare n. 2222 del 31 gennaio 1995.

Essa prevede in ambito di pianificazione urbanistica la realizzazione, fra le altre, della carta delle zone a maggiore pericolosità sismica locale (cfr. TAVV. B.5.1/5).

Tale carta, che costituisce la sintesi e l'interpretazione di tutti gli elementi emersi dallo studio e rappresentati nelle apposite carte tematiche, deve evidenziare le aree con particolari problematiche sismiche, tali da costituire fattore di pericolosità per le strutture e infrastrutture presenti nel territorio e per la popolazione residente.

A tal fine, la suddetta norma elenca una serie di scenari di potenziale pericolo e i possibili effetti attesi in caso di sisma. Si tratta di situazioni riconducibili a fattori geologici, geomorfologici, idrogeologici e geotecnici, riassunte negli allegati E1 ed E.2 della circolare stessa. Inoltre, la circolare propone nell'allegato F una classificazione dei terreni in funzione delle possibili modifiche dello spettro di risposta sismica, così come di seguito riportato:

TERRENI TIPO S1

Rocce lapidee, con eventuale strato superficiale di alterazione o copertura non superiore 5 metri, o altro materiale caratterizzato comunque da velocità VS di propagazione delle onde sismiche trasversali superiore 700 m/s.

Depositi di sabbia e ghiaie pensate e/o terreni coesivi compatti, senza un substrato a forte contrasto di proprietà meccaniche, entro i primi 90 metri circa dalla superficie, caratterizzati da valori crescenti delle onde trasversali compresi almeno tra 250 e 500 m/s per profondità comprese tra 5 e 30 metri e nella fascia 350-700 m/s per profondità maggiori.

TERRENI TIPO S2

Depositi alluvionali da poco a mediamente addensati, caratterizzati da velocità medie VS inferiori a 250 m/s entro profondità comprese tra 5 e 30 m, ed inferiori a 350 m/s a profondità maggiori.

Depositi di terreni prevalentemente sabbiosi o argillosi, con spessore compreso fra tra 30 e 90 metri e velocità VS inferiori a 500 metri al secondo, poggianti su un substrato a forte contrasto di proprietà meccaniche (roccia a velocità VS dell'ordine di 1000 metri al secondo o più).

Tutti i litotipi presenti sono stati caratterizzati dal punto di vista geofisico direttamente o per confronto con le tipologie proposte.

I criteri di classificazione dei terreni adottati sono quelli indicati nella circolare sopra citata; si è cercato, cioè, di assimilare la risposta sismica attesa dei terreni investigati a quelle previste dalla circolare, talvolta con qualche difficoltà in quanto i casi previsti dalla normativa, sebbene comprendano situazioni stratigrafiche e geotecniche frequenti, non risultano certamente esaustivi della grande molteplicità di situazioni possibili.

In particolare sono state riscontrate tre tipologie di terreni con risposta sismica riconducibile a quella prevista dalla norma così come di seguito specificato:

- Complesso carbonatico con comportamento assimilabile a rocce lapidee, con eventuale strato superficiale di alterazione o copertura non superiore 5 metri, o altro materiale caratterizzato comunque da velocità VS di propagazione delle onde sismiche trasversali superiore 700 m/s (S1a);
- Flysch Numidico e Calcareniti Quaternarie, con comportamento assimilabile a depositi di sabbia e ghiaie pensate e/o terreni coesivi compatti, senza un substrato a forte contrasto di proprietà meccaniche, entro i primi 90 metri circa dalla superficie, caratterizzati da valori crescenti delle onde trasversali compresi almeno tra 250 e 500 m/s per profondità comprese tra 5 e 30 metri e nella fascia 350-700 m/s per profondità maggiori (S1b).

Detrito di falda, alluvioni e depositi di spiaggia, assimilabili a depositi alluvionali da poco a mediamente addensati, caratterizzati da velocità medie VS inferiori a 250 m/s entro profondità comprese tra 5 e 30 m, ed inferiori a 350 m/s a profondità maggiori.

Nella cartografia tematica sono state inoltre rappresentate tre scenari di pericolosità fra quelle elencate dalla circolare, indicando per ciascuna in legenda i possibili effetti attesi in caso di sisma.

Più precisamente, sono state segnalate le seguenti tipologie di situazioni:

GRUPPO I - zone caratterizzate da movimenti franosi recenti o quiescenti (A) e zone con acclività maggiore del 35% associate a copertura detritica; in tali situazioni è possibile la accentuazione dei fenomeni di instabilità in atto o potenziali dovuti ad effetti dinamici quali possono verificarsi in occasione di eventi sismici. Nel primo caso (A) le zone non sono utilizzabili urbanisticamente, nel secondo caso (B) le zone sono utilizzabili urbanisticamente con l'obbligo di effettuare verifiche sulla risposta sismica dei terreni al fine di dimensionare e adeguare le scelte tecniche.

GRUPPO IV – zone di contatto tra litotipi con caratteristiche fisico-meccaniche diverse per contatto tettonico (C1) e per contatto stratigrafico (C2). In tali contesti sono possibili amplificazioni differenziate del moto del suolo e cedimenti. Le prescrizioni che riguardano i rispettivi casi non consentono nelle zone C1 l'utilizzo per fini edificatori, mentre per le zone C2 è consentito l'uso urbanistico con l'obbligo di effettuare verifiche sulla risposta sismica e subordinare l'utilizzazione all'identificazione del piano di sedime omogeneo.

GRUPPO V – zone con terreni di fondazione particolarmente scadenti (D). In questi contesti possono verificarsi cedimenti diffusi e possibili fenomeni di liquefazione. Le prescrizioni orientano l'uso del territorio dal punto di vista urbanistico con l'obbligo di effettuare verifiche geognostiche e sismiche dei terreni.

1.0 Identificazione e delimitazione dei vincoli

Lo studio effettuato ha consentito di identificare all'interno del territorio comunale di Capaci alcuni elementi geomorfologici, idrogeologici e litotecnici che determinano la necessità di apporre vincoli inerenti la pianificazione urbanistica.

I suddetti vincoli possono avere diverse valenze in ragione delle differenti azioni e/o interventi da porre in essere nell'ambito territoriale.

In particolare i vincoli discendono da fenomeni connessi a dissesti, ad attività erosiva dei corsi d'acqua, ad esondazioni, alla presenza di lineazioni tettoniche ed a risposte sismiche locali connesse alle caratteristiche fisico-meccaniche dei terreni.

Le diverse condizioni possono dare luogo a osservazioni, raccomandazioni e/o prescrizioni di compatibilità con le scelte di utilizzo urbanistico del territorio.

La identificazione, la delimitazione e la tipologia dei suddetti vincoli sono state riportate nelle carte tematiche della pericolosità geologica e della pericolosità sismica.

Inoltre, a seguito delle suddette caratterizzazioni sono stati previsti interventi finalizzati all'eliminazione e/o mitigazione dei fenomeni connessi.

In particolare si è voluto sviluppare un ulteriore dettaglio connesso alla pericolosità per fenomeni di crollo.

Questa situazione di fatto ha determinato e determinerà un regime di vincoli che deve assolutamente tenere conto degli interventi di salvaguardia secondo le valutazioni previste nell'ambito del decreto di approvazione della revisione del Rischio idrogeologico ai sensi dell'art. 6 del DARTA 298/91.

Le aree in cui ricadono i suddetti fenomeni sono da inibire alla edificazione e/o all'uso urbanistico in ragione della natura, dello stato di attività, della estensione e tipologia del dissesto. In presenza di infrastrutture e strutture sono da attuare gli interventi volti alla salvaguardia dell'edificato esistente.

- nelle aree interessate da fenomeni di crollo e ribaltamento non è consentito l'uso urbanistico;
- in presenza di fenomeni di rotolamento, crolli, scoscendimenti e distacchi non è consentito l'uso edificatorio. Tali aree sono urbanisticamente utilizzabili a condizione di verifiche geognostiche e geotecniche e alla realizzazione di opere di salvaguardia e sistemazione. Vanno comunque poste in essere opere finalizzate alla salvaguardia, consolidamento e recupero;
- nelle aree con presenza di ridotte balze calcaree e soggette a potenziali fenomeni di rotolamento è consentito l'uso a condizione di verifiche geognostiche e geotecniche ed alla realizzazione di opere di salvaguardia e sistemazione;
- non è consentito uso edificatorio, fermo restando la necessità di verificare la compatibilità delle scelte tecniche con lo stato dei luoghi;
- nelle aree esposte a fenomeni di erosione e di scalzamento al piede da parte dei corsi d'acqua non è consentito uso urbanistico. Tuttavia occorre porre in essere interventi atti ad eliminare o minimizzare il fenomeno laddove prossimi a manufatti esistenti;
- nelle aree esposte a fenomeni di esondazione occorre realizzare le opere di regimazione idraulica. All'interno delle fasce di rispetto di cui al R.D. n° 523/904 non è consentito uso urbanistico;
- per quanto riguarda gli aspetti legati alla risposta sismica locale si prescrive che in corrispondenza di contatti stratigrafici tra litotipi con caratteristiche fisico meccaniche differenti e/o con terreni terreni di fondazione scadenti, vengano effettuate indagini geognostiche e geofisiche puntuali volte alla individuazione e caratterizzazione di piani di sedime omogenei e/o comunque idonei in relazione al dimensionamento delle scelte tecniche poste a fondamento dell'opera da realizzare.

Per quanto riguarda la sorgente denominata "Santa Rosalia" sono state distinte, all'interno della zona di rispetto di cui al D.Lgs. n° 152/99, due aree.

In particolare:

- una fascia a monte in cui sussiste il vincolo di salvaguardia e di rispetto;
- una fascia a valle della sorgente per la quale si ritiene possa sussistere l'edificato esistente e prevedersi una regolamentazione urbanistica.

Tale affermazione è strettamente connessa al fatto che l'uso urbanistico di questa porzione di territorio non interferisce con il regime idraulico della sorgente; ciò in

3.0 Considerazioni conclusive

L'insieme dei dati e delle informazioni raccolte consente di formulare alcune considerazioni riguardo a questa fase di studio connessa alla progettazione del PRG.

In particolare possono sintetizzarsi alcuni aspetti fondamentali che trovano una maggiore definizione alle scale di dettaglio che definiscono in base al programma di indagini geognostiche acquisite ed eseguite gli elementi più caratteristici e di maggiore interesse.

Gli elementi ed i fattori di maggiore rilevanza di cui si dovrà tenere conto nella programmazione urbanistica vengono di seguito indicati:

per quanto concerne le soglie di attenzione connesse a fenomeni di degrado, esse riguardano principalmente le aree esposte a fenomeni di crolli e scoscendimenti. Per le prime occorre prevedere fasce di salvaguardia; altresì occorre porre in essere interventi volti alla mitigazione della pericolosità geologica, sia a protezione dei manufatti esistenti a valle che di quelli posti lungo il ciglio delle scarpate.

Per le seconde, in corrispondenza delle aree esposte a scoscendimento, all'interno delle quali sono spesso presenti falde idriche, occorre realizzare drenaggi e bonifiche dimensionate opportunamente.

Per quanto riguarda le aste torrentizie vanno considerate fasce di rispetto in prima istanza connesse all'attuale dimensionamento delle sezioni idrauliche e delle conseguenti fasce di territorio esondabili. In una seconda fase, quella successiva alla realizzazione delle sistemazioni idrauliche conformi alle sezioni adeguatamente dimensionate per lo smaltimento delle piene calcolate per tempi di ritorno fino a 500 anni, in conformità agli studi di settore già approvati, una fascia di rispetto di m 10 per ciascuna sponda ai sensi del R.D. n°523 del 1904.

Si precisa che nello studio è stato considerato il parere espresso nel DARTA del 17/10/2002 sulla revisione del rischio idrogeologico, ai sensi dell'art.6 del DARTA n° 298/41 per le opere idrauliche e di consolidamento, nonché le successive schede previste dalla circolare ARTA 1/03.

Si ribadisce che le fasce di rispetto in questa situazione sono quelle derivanti dall'applicazione del R.D. n° 523/904 (m 10 per ciascuna sponda).

Per quanto concerne le pianificazioni attuative (P.E., PEEP, P.I.P, ecc.) non contemplate in questa fase, si rinviano adeguamenti ed ulteriori fasi di dettaglio in conformità alle diverse esigenze normative.

Altre considerazioni riguardano le caratteristiche dei terreni sia dal punto di vista geologico che geotecnico e la presenza di falde idriche poste a varia profondità soprattutto nell'ampia piana costiera.

In corrispondenza di queste aree dovrà porsi particolare attenzione al piano di sedime dei manufatti, ciò in relazione, come già accennato, all'estrema variabilità dei sedimenti, allo scambio di apporto idrico in sottosuolo fra le acque superficiali e sotterranee, alla risposta sismica ed alla eventuale presenza delle lineazioni tettoniche.

Palermo,

Il geologo

(dott. Gaspare Ingrao)

II geologo

(dott.sa Santina Sambataro)

A

APPENDICE

- Programma delle indagini
- Computo metrico indagini geognostiche eseguite a consuntivo

Programma delle indagni

			- PROGRAMMA DELLE INI			Pag.1
PRO	GETTO	indagir	ni geognostiche dello s	tudio geologico P.R.G.	-tecnico a	
. i had the anti-intern.						
计时期限			DRAZIONE			IMPORTO
20.02.01	attrezzatura perforazion scarico, il tr posizionam accesso, le attrezzatura o tecnico, g smontaggio l'opera a pe	a per sondari a percussiona percussiona percussiona asporto in asserbiazzole percussorie accessorie percus e tutto qua erfetta regol	a corpo		×	846,6
	Installazion rotazione in	e di attrezza corrisponde	atura per sondaggi a enza degli altri punti di	Per ogni installazione	Numero di	IMPORTO
20.02.02	montaggio e lo smontaggio e tutto quant'altro occorre per dare al posizionamento un buon assetto di lavoro: per ogni installazione, esclusa la prima, €			254,6	4	1.018,40
Perforazione		e ad andame	ento verticale eseguita a	Per profondità	Metri	2.020,40
	rotazione, a	distruzione	di nucleo, del diametro	comprese tra 0 e	0.0000000000000000000000000000000000000	
	compreso l'e terreni di di rocce lapide descrizione apposite cas lo schema p quote e le n reimpianto f proveniente additivato co	eventuale riversa natura versa natura e tenaci, co e la conserv ssette catalo lanimetrico ote sulla falo inale del for dalla perfor on malta cer	anche in presenza di falda vestimento del foro, in a e consistenza, escluse impresa l'estrazione, la vazione del cutting in ogatrici e compreso, infine dell'ubicazione del foro, le da, compreso il ro con materiale razione opportunamente mentizia: e tra 0 e 30 m a ml:		75,00	3.892,50

a sommare € 5.757,50		
	a sommare €	5.757,50

		PAR			INDAGINI -
-	PRUIT-	ח מעו.	лила	11111	INITACEINI

Pag. 2

rlporto €

5757,50

odbetState to	CAROTACOTO			
74 N/19 12:02 1361	CAROTAGGIO	Costo a ml	Metri totali	IMPORTO
20.02.04	Sovrapprezzo al precedente punto A3 per i soli tratti di perforazione per i quali è richiesto il carotaggio, in terreni di qualsiasi natura e consistenza escluso rocce in trovanti lapidei per l'attraversamento delle quali è richiesto l'impiego di carote diamantate del diametro minimo di 85 mm, compresa la conservazione in cantiere delle carote in apposite cassette catalogatrici quotate e la colonna stratigrafica:	19,70	75,00	1477,50
1464	PRELIEVO DI CAMPIONI INDISTURBATI	Costo a campione	Numero di campioni	IMPORTO
20.02.11/1	Prelievo di campioni indisturbati, compatibilmente con la natura dei terreni, durante i sondaggi a rotazione, con campionatore a pareti sottili spinto a pressione, diametro minimo 85 mm., compresa la fornitura della fustella, da restituire a fine lavoro, la paraffinatura, l'etichettatura e l'invio al laboratorio geotecnico: per profondità compresa tra 0 a 30 m a campione	81,90	12	982,80
and the william of				
	CASSETTE CATALOGATRICI	Costo a cassetta	Numero di cassette	IMPORTO
20.02.14	Cassette catalogatrici in legno, in polistirolo espanso, oppure in lamiera zincata di dimensioni cm 50x100, scompariate in maniera tale da consentire la conservazione di carote o campioni, compreso l'onere delle indicazioni e l'invio al magazzino indicato dalla D.L. a cassetta	27,10	19	514,90

a sommare €	8732,70	
		_

X

Computo metrico indagini geognostiche eseguite a consuntivo

17		- (Computo Metrico a	consu	ntivo -			Pag.1
PRO	GETTO	indagir	ni geognostiche de		ıdio geolog P.R.G.	gico-1	'ecnico	a supporto del
1.25.00 10.00 00.00								
Sept. To sept.	A		RAZIONE					IMPORTO
20.02.01	attrezzatura perforazion scarico, il ti posizionam accesso, le attrezzatura o tecnico, g smontaggio l'opera a pe	a per sonda i a percussion rasporto in a ento in asse piazzole per e accessorie gli oneri per o e tutto qua erfetta regol	a co	o e lo di ntiere			s .	846,6
			atura per sondaggi a		Per ogr		Numer	IMPORTO
	1		enza degli altri punti (di	installazio	one	o di	2711 01(10
20.02.02	esecuzione montaggio occorre per assetto di la	di pista e pi e lo smonta dare al pos avoro:	primo, compresa la azzola, gli oneri per il ggio e tutto quant'alti izionamento un buon esclusa la prima, €	ro	254,6	5	4	1.018,40
	Perforazion	e ad andam	ento verticale eseguit	a a	Per profon	dità	Metri	21020/40
	1		di nucleo, del diame		comprese tr			
20.02.03	compreso l' terreni di di rocce lapide descrizione apposite ca: lo schema p quote e le r reimpianto i proveniente additivato ci	eventuale riversa natura ee tenaci, co e la conserv ssette catalo planimetrico note sulla fal finale del foi e dalla perfoi on malta cei	anche in presenza di fi vestimento del foro, i a e consistenza, esclu mpresa l'estrazione, la razione del cutting in ogatrici e compreso, in dell'ubicazione del fo da, compreso il ro con materiale razione opportuname mentizia: e tra 0 e 30 m a ml:	n se la nfine, ro, le	51,90		89,00	4.619,10

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	a sommare €	6.484,10	

- Computo Metrico a consuntivo -	Pag. 2

rlporto € 6484,10

下层数数	CAROTAGGIO	Costo a ml	Metri totali	IMPORTO
20.02.04	Sovrapprezzo al precedente punto A3 per i soli tratti di perforazione per i quali è richiesto il carotaggio, in terreni di qualsiasi-natura e consistenza escluso rocce in trovanti lapidei per l'attraversamento delle quali è richiesto l'impiego di carote diamantate del diametro minimo di 85 mm, compresa la conservazione in cantiere delle carote in apposite cassette catalogatrici quotate e la colonna stratigrafica:	19,70	60,50	1191,85
非路袋	PRELIEVO DI CAMPIONI INDISTURBATI	Costo a campione	Numero di campioni	IMPORTO
20.02.11/1	Prelievo di campioni indisturbati, compatibilmente con la natura dei terreni, durante i sondaggi a rotazione, con campionatore a pareti sottili spinto a pressione, diametro minimo 85 mm., compresa la fornitura della fustella, da restituire a fine lavoro, la paraffinatura, l'etichettatura e l'invio al laboratorio geotecnico: per profondità compresa tra 0 a 30 m a campione	81,90	4	327,60
Rif.	PRELIEVO DI CAMPIONI RIMANEGGIATI	Costo a campione	Numero di campioni	
20.2.9	Prelievo di campioni rimaneggiati nel corso della esecuzione dei sondaggi e loro conservazione entro appositi contenitori trasparenti, chiusi ermeticamente compresa l'etichettatura, il trasporto al laboratorio di analisi etc. a campione	6,5	1	6,50
32.00				-
A CHARLES	CASSETTE CATALOGATRICI	Costo a cassetta	Numero di cassette	IMPORTO
20.02.14	Cassette catalogatrici in legno, in polistirolo espanso, oppure in lamiera zincata di dimensioni cm 50x100, scompariate in maniera tale da consentire la conservazione di carote o campioni, compreso l'onere delle indicazioni e l'invio al magazzino indicato dalla D.L. a cassetta	27,10	19	514,90

8524,95

36 AMAG		
1 1 1 1 1 1 1	- Computo Metrico a consuntivo -	Down 2
		Pag. 3

	A The second control of the second control o	S. C. C. S. C.	porto (8	8524,95
Rif.	POSA IN OPERA DI STRUMENTAZIONE GEOTECNICA			tri totali	
20.05.0	Installazione di piezometri a tubo aperto da 5,08 cm in PVC microfessurato, in fori già predisposti, compresa la fornitura del materiale occorrente, la formazione del tappo di fondo, la collocazione de tubo metallico od in materiale plastico, la costruzione del filtro drenante e l'ulteriore tappo impermeabile di chiusura laterale al ml.			50,5	1338,25
20.05.08	Pozzetto di protezione della strumentazione geotecnica, in conglomerato cementizio, provvisti di coperchio in ferro e lucchetto	119,60		4	478,40
			son	nmano	1816,65
TENNE AS	PROSPEZIONI SISMICHE				IMPORTO
20.01.03.	comprendente la individuazione dei tratti corrispondenti a diversi rifrattori, il calcolo delle velocità apparenti, la definizione dei diversi strati in spessori e velocità, la costruzione delle relative sismosezioni e relazione riepilogativa: 1) per ogni sondaggio completo di andata e ritorno, con stendimento di lunghezza non superiore a	253,00		13	
0.01.03.2	25 Euro 2) per stendimento di lunghezza superiore a m. 25 - al m. oltre i primi 25 m	1,40	1	96	3289,00
	DONW HOLE Approntamento ed installazione sul primo foro, compreso il carico e lo scarico, il trasporto in andata e ritorno, il posizionamento in assetto di lavoro, e tutto quant'altro occorre per dare l'opera a perfetta regola d'arte: a corpo €	1			274,40 IMPORTO 728,20
	Installazione in corrispondenza degli altri punti d per ogni installazione, esclusa la prima	Per ogni installazion		Numer o di	IMPORTO
l E	Secuzione	51,65		2	103,30
		807,31		3	2421,93

Sommano 6816,83

a sommare € 17158,43

